
PRISM
Project for Integrated Earth System Modelling

An Infrastructure Project for Climate Research in Europe
funded by the European Commission
under Contract EVR1-CT2001-40012

The VTK_Mapper Application

Edited by:
Patrick Brockmann

PRISM-Report Series-19

1st Edition

(last change: December 17, 2004)



Copyright Notice
c

�
Copyright 2003 by PRISM

All rights reserved.
No parts of this document should be either reproduced or commercially used without prior
agreement by PRISM representatives.

How to get assistance?
The individual work packages of the PRISM project can be contacted as listed below.
PRISM publications can be download from the WWW server of the PRISM project under the
URL: <http://prism.enes.org/Results/Documents/>

Phone Numbers and Electronic Mail Adresses
Electronic mail adresses of the individual work packages are composed as follows :
prism_ work package @prism.enes.org
Name Phone PRISM Work Package

Patrick Brockmann wp4a

The Processing and Visualisation
Team

wp4a



Contents

1 The VTK Mapper Application 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Covered features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Examples of use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Usage documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.8 Useful On-line References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

i



ii CONTENTS



List of Figures

1.1 Different model grids with VTK Mapper . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Different representation modes in VTK Mapper . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Isocontour in a linear projection with VTK Mapper . . . . . . . . . . . . . . . . . . . . . 6
1.4 Switching between representation modes with VTK Mapper . . . . . . . . . . . . . . . . 7
1.5 The Qt user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Off screen calling with VTK Mapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

iii



iv LIST OF FIGURES



List of Tables

v



vi LIST OF TABLES



Chapter 1

The VTK Mapper Application

1.1 Introduction

The application VTK Mapper described in the following lines is a prototype of an application made during
the PRISM project. The initial goal was to demonstrate the high potential in designing applications using
the VTK library to handle the visualization, the CDMS/COCO libraries to access and process netCDF
files and the Qt library to build handy and nice user interface.

Designing and implementing such a prototype is helpful in insuring that essential features like 2D/3D
rendering, vector-based quality output, batch and offscreen running mode are fully covered. Such a appli-
cation is then suitable for both Low End environment use (scripting, batch and offscreen modes) and High
End use (high interactivity).

1.2 Software architecture

All the code of the VTK Mapper application has been written in the Python language which is a portable
open source scripting language. This powerful programming language can be extended with compiled
modules implemented in C/C++ or FORTRAN. To extend and bring higher visualization capabilities to
the CDAT/VCS system, the Visualization ToolKit (VTK) has been investigated.

The Visualization ToolKit (VTK) is a highly referenced C++ library in the graphics/visualization/imaging
domain. VTK consists of an API (Application Programming Interface) with more than 700 C++ classes
implented with more than 350,000 lines of C++ code (110,000 executable lines) and with more than
215,000 lines of automatically generated Python wrapper code. VTK supports a wide variety of visualiza-
tion algorithms including scalar, vector, tensor, texture, and volumetric methods; and advanced modeling
techniques such as implicit modelling, polygon reduction, mesh smoothing, cutting, contouring, and De-
launay triangulation. In addition, dozens of imaging algorithms have been directly integrated to allow the
user to mix 2D imaging / 3D graphics algorithms and data. The design and implementation of the library
has been strongly influenced by object-oriented principles. VTK has been installed and tested on nearly
every Unix-based platform, PCs (Windows 98/ME/NT/2000/XP), and Mac OSX.

To read the netCDF files and access to all the metadata informations, the CDMS Python module has been
employed. Its capacities to get the grid and the mesh from a variable stored in a netCDF file have been
greatly helpful. The management of masked values recovered from the different possible combinaisons
of masks (ocean/land mask and the variable mask itself) has been made possible through the use of the
CDMS/MV Python module.

To design a user interface, the Qt library and its full set of GUI (Graphical User Interface) controls has
been prefered to other libraries also explored. Qt is a platform-independent set of C++ classes that can be
freely used in open source projects. It also comes with development tools such as Qt Designer to visually

1



2 CHAPTER 1. THE VTK MAPPER APPLICATION

build your application. Technically, the VTK Mapper application has been implemented with calls to the
Python bindings of the Qt toolkit, module called PyQt.

1.3 Covered features

With the software architecture used in the VTK Mapper application, you can do the following:

Read netCDF files using CF or COARDS convention. By using the CDMS module, the reading of
variables from netCDF files and the recovery of metadata informations have been easily managed.
The Climate and Forecast (CF) convention used to store grid information of rectilinear, curvilin-
ear and generic models and the corresponding GetGrid() and GetMesh() methods from the CDMS
module have been particularly useful. CDMS also offers backward compliance for netCDF files
using the COARDS convention. Conversions from one grid type to another are easily implemented
through calls to the toCurveGrid() and the toGenericGrid() methods.

To let a user explore repositories of model output with conventions older than the CF convention, an
external gridfile is written containing all information of the grid which could be missing in models
output files. The VTK Mapper is then a really flexible and backward compliant application.

Read remote netCDF files served by an OPeNDAP/DODS server. By using the CDMS module com-
piled with the OPeNDAP netCDF API rather than the usual netCDF API, it becomes possible to
read and access part of a remote netCDF file. It opens a virtually unlimited world access to mod-
els or data output repositories served by OPeNDAP/DODS servers. An IPSL OPeNDAP/DODS
server has been set during the PRISM project to serve and share IPCC simulations output computed
from the IPSL coupled model. It has also been used to test netCDF files from OASIS coupler and
particularly their full compliance to the netCDF CF convention.

Read CDML files (collections of netCDF files). By using the CDMS module and CDML (Climate Data
Markup Language), you can aggregate split netCDF files and see them combined as a single dataset.
CDML files are generated by the cdscan command provided with the CDAT distribution.

Render 2D/3D objects. By using the VTK API, it is possible to render 2D and 3D complex data struc-
tures. An orthographic projection has been computed to produce a 3D scene and a linear (plate
caree) projection to produce a 2D scene. Interactive zoom and translation with easy mouse controls
are the proposed features of the VTK Mapper application to get interactivity. The user can also
interactively switch between projections passing from a 2D to a 3D rendering.

Render large objects with appropriate level-of-details. By using the VTK API and the use of level-of-
details objects, the application can achieve acceptable rendering performance at the cost of lower-
resolution representation. This is particularly useful during motions when the application renders
large objects to maintain interactive frame rates.

Produce isocontours or polygons maps. By using the VTK API and the marching squares algorithm, it
is possible to generate isocontours from generic, curvilinear and of course rectilinear grids. Switch-
ing from an isocontour rendering to a polygon map rendering is as easy as pressing a key. By this
interaction, the user avoids the long cycle of changing parameters/launching application.

Additional controls to pass from a vertical level to another or from a time level to another are
proposed with the VTK Mapper application. The rendered modes (isofilled, cells, cellsbounds,
isolines1, isolines2) are updated following key events.

Isocontours are generated with respect to the original topology of cells boundaries; other isocontour
algorithms using cell centers have been investigated in particular Delaunay triangulation.

Handle any type of model grid. By using the VTK API, you can handle structured (uniform rectilinear,
non-uniform rectilinear, and curvilinear grids), unstructured, polygonal and image data. The dif-
ferent dataset structures proposed by the VTK API cover all the needs for building a visualization
application taking care to represent correctly topology and connectivity. The different model grids



1.4. EXAMPLES OF USE 3

have been represented with the use of the vtkPolydata dataset type. This unstructured dataset type
requires an explicit description of cells and points from the model grid. The connectivity is then
dynamically computed with the use of a vtkCleanPolyData filter to join cells with shared boundary
points.

Probe variable values. By using the VTK API, the user can focus on a particular zone and also probe
values from the field displayed. This feature is particularly helpful when model codes are in a beta
stage and when the user expects to examine the model output at its real and computed form.

Write raster output. By using the VTK API, it is possible to create raster images from the displayed
window in different formats: Windows Bitmap (*.bmp), JPEG Images (*.jpg), PNG Images (*.png),
Binary PPM (*.ppm) and TIFF images (*.tif). In the VTK Mapper application the PNG image
format has been chosen because it is a recommended open source true lossless format.

Write vector-based output. By using the VTK API along with the class vtkGL2PSExporter, it becomes
possible to save rendered objects in a high quality vector PostScript (PS/EPS) or PDF file. This
class uses the GL2PS API to translate the OpenGL scene to vector format. It has some limitations
since the PostScript is not an ideal language to represent complex 3D scenes but you can generate
high quality vector PostScript with simple 3D scenes and most 2D plots. Thus, with a simple key
press, the VTK Mapper application offers the user, generation of a PDF file.

Run in batch and off screen mode. By using the VTK and Mesa libraries, it becomes possible to ren-
der a OpenGL scene in memory, without using hardware capacities of a graphic card. Thus, the
VTK Mapper application can produce a PDF file and a PNG file without any open window on your
display or Xserver running. This feature effectively enables you to work off-line in a batch-oriented
environment.

Automate mass-production documents. By using Python scripts and calls to the VTK Mapper applica-
tion expressed as a single line commands, you can mass produce documents. All interactive actions
of the VTK Mapper application can be retrieved as options in a UNIX-like command.

Use a high level interface. By using the Qt API, it has been possible to develop a very high level user
interface. Many controls are possible with use of graphical and powerful widgets. It include a color
control dialog, grid text layout to present the different variables and their attributes from the netCDF
file loaded, control sliders, file selection dialogs and many others.

Process data. By using the COCO Python extension to CDMS API, it will be possible to process data
easily. This feature is for now in a beta stage since there a small incompatibility with COCO and
the CDMS generic grid structures. For now, processing is made by a simple evaluation of a Python
expression.

1.4 Examples of use

The figures numbered 1.1 to 1.6 show screen shots obtained from VTK Mapper and also the commands
used to generate the screen shots from the command line.

In the examples, all the file arguments can be either a local file or a remote file served, for example, from
the IPSL OPeNDAP/DODS server.

Download files from:

http://dods.ipsl.jussieu.fr/prism/gridsCF

and access the following:

http://dods.ipsl.jussieu.fr/fast/atlas/2L27_SE_2030_2039_output/

to find example files used.

Alternatively, it is be much easier to use the remote access capability by using syntax of the following
form:



4 CHAPTER 1. THE VTK MAPPER APPLICATION

http://dods.ipsl.jussieu.fr/cgi-bin/nph-dods/dir1/dir2/file.nc

An example of the alternative ways of referencing the data is given in Figure 1.1



1.4. EXAMPLES OF USE 5

$ mapper.py -v -p orthographic -x 2L27_SE_2030_2039_histmth.nc tsol
$ mapper.py -v -p orthographic -x sampleCurveGrid4.nc sample

With remote access, this would read:
$ mapper.py -v -p orthographic-x
http://dods.ipsl.jussieu.fr/cgi-bin/nph-dods/...
...prism/gridsCF/sampleCurveGrid4.nc sample
$ mapper.py -l 100:2500:100 -v -p orthographic -x sampleGenGrid3.nc
sample

Figure 1.1: Different model grids: rectilinear, curvilinear, generic



6 CHAPTER 1. THE VTK MAPPER APPLICATION

$ mapper.py -v --color color1.sty 2L27_SE_2030_2039_histmth.nc precip

Figure 1.2: Switching between representation mode: cellsbounds, isocontours in a linear projection with an atmo-
spheric model output (rectilinear grid).

$ mapper.py -v --operation ’var-273.15’ -l -40:40:5
2L27_SE_2030_2039_output/2L27_SE_2030_2039_histmth.nc t2m

Figure 1.3: Application of an operation to an atmospheric variable in an isocontour mode in a linear projection.



1.4. EXAMPLES OF USE 7

$ mapper.py -v --levels -2:18:1 --lindex 9 --color color3.sty
--gridfile IPSL.ORCA2_gridCF.nc --projection orthographic
2L27_SE_2030_2039_grid_T.nc votemper

If remote access is used, this example becomes:

$ mapper.py -v --levels -2:18:1 --lindex 9 --color color3.sty
--gridfile
http://dods.ipsl.jussieu.fr/cgi-bin/nph-dods/...
...prism/gridsCF/IPSL.ORCA2_gridCF.nc
--projection orthographic
http://dods.ipsl.jussieu.fr/cgi-bin/nph-dods/...
...fast/atlas/2L27_SE_2030_2039_output/2L27_SE_2030_2039_grid_T.nc

votemper

Figure 1.4: Switching between representation mode: cellsbounds, isocontours in an orthographic projection with
an ocean model output (curvilinear grid).



8 CHAPTER 1. THE VTK MAPPER APPLICATION

$ mapper.py -x --actor isofill --camera camera4.sty --color color4.sty
--continents --continents_color 0.0,0.0,1.0 --continents_file
./polydouble_earth_continents.nc --continents_width 2 --equator
--equator_color 0.0,0.0,0.0 --equator_width 2 --grid --grid_color
0.45,0.45,0.45 --grid_delta 10 --grid_width 1 --levels_nb 15
--operation ’var-273.15’ 2L27_SE_2030_2039_histmth.nc t2m

Figure 1.5: The Qt user interface and the corresponding command to re-produce the map.

$ mapper.py -v --offscreen -l 100:1000:50 --equator -continents
2L27_SE_2030_2039_histmth.nc rhum

Figure 1.6: An off screen call to produce a pdf file and a png file with a cells visualization mode.



1.5. USAGE DOCUMENTATION 9

1.5 Usage documentation

Usage: mapper.py [-h]
[-p projection] [-a actor]
[-n levels_nb] [-l min:max:delta]
[--bg r,g,b] [--fg r,g,b]
[--camera camera_object_file] [--color color_object_file]
[--kindex index] [--lindex index]
[--continents] [--continents_file file]

[--continents_color r,g,b] [--continents_width width]
[--boundaries] [--boundaries_color r,g,b]

[--boundaries_width width]
[--equator] [--equator_color r,g,b] [--equator_width width]
[--grid] [--grid_color r,g,b] [--grid_width width]

[--grid_delta delta] [--verbose] [--prefix prefixfilename]
[--offscreen] [-x] [--interface]

[--gridfile gridCF_file]
var_file var

Options:
-h, -?, --help, -help
Print this manual

-x, --interface
Run the application with the GUI interface

-p, --projection
Projection to choose in (linear,orthographic)

-a, --actor
Actor to choose in:

isofill, cell, cellbounds, isoline1, isoline2
Other accepted syntax are:

isofilled, cells, cellsbounds, isolines1, isolines2
-v, --verbose
Verbose mode

-n, --levels_nb
Number of levels should be in [3:100]

-l, --levels
Levels expressed as minimum:maximum:delta
Example: -l 2:32:4 from 2 to 32 by step of 4

-l 0:0:4 from min to max by step of 4
--bg, --background
Background color expressed as red, green, blue values in [0:1]

Example: --bg 0.3,0.3,0.3
--fg, --foreground
Foreground color expressed as red, green, blue values in [0:1]
Example: --fg 1.0,1.0,1.0

--op, --operation
Operation to apply on variable (use quote)
Example: X--op ’var*86400’

--op ’(var*100)+273.15’
--camera



10 CHAPTER 1. THE VTK MAPPER APPLICATION

Camera object file
--color
Color object file

--kindex
Index for the 3rd dimension (vertical axis) of the variable to
plot [1:n]

--lindex
Index for the 4th dimension (time axis) of the variable to
plot [1:n]

--boundaries, --continents, --equator, --grid
Drawn if this option is present

--boundaries_color, --continents_color, --equator_color, --grid_color
Color expressed as red, green, blue values in [0:1]
Example: --boundaries_color 0.,0.,0.3

--boundaries_width, --continents_width, --equator_width, --grid_width
Lines width expressed in [1:5]

--continents_file
NetCDF continents file (CONT_LON,CONT_LAT variables)

--grid_delta
Delta for grid lines (default=30)

--prefix
Filename prefix used when PNG and PDF file are saved
(default=picture)

--gridfile
NetCDF file at the CF convention from where the mesh is read.
If present, the "mask" variable is read and used in combinaison
with the mask deduced from the variable.
If gridfile not present, use only self descriptions of
the variable.

--ratioxy
Set the ratio between height and width
for linear projection (default=1.0)

--offscreen
Produce a PNG and a PDF file in a offscreen mode

1.6 Installation

You can download all the material from

http://dods.ipsl.jussieu.fr/vtk/VTK Mapper

and follow the instructions you will find there.

1.7 Conclusion and Future Work

The initial set of defined goals has been covered. This confirms the strong advantages to build applica-
tions over the explored software architecture. Designing and implementing applications efforts will be
continued in this way.

It has to be noted that the open source Paraview will be an excellent confirmation for the use of VTK since
Paraview also uses this toolkit as the data processing and rendering engine and is a major keystone for
large visualization projects.



1.8. USEFUL ON-LINE REFERENCES 11

1.8 Useful On-line References

Links to related materials mentioned:
� VTK Mapper application

http://dods.ipsl.jussieu.fr/vtk/VTK Mapper
� VTK toolkit

http://www.vtk.org
� CDAT/CDMS (Climate Data Management System)

http://esg.llnl.gov/cdat
� COCO (CDMS overloaded for CF Objects)

http://prism.enes.org/WPs/WP4a/ProcessingLib
� Mesa for off screen rendering

http://www.mesa3d.org/
� PyQt (Python bindings for Qt) for the interface of the application

http://www.trolltech.com/qt

http://www.riverbankcomputing.co.uk/pyqt
� Paraview

http://www.paraview.org



12 CHAPTER 1. THE VTK MAPPER APPLICATION


