PRISM
An Infrastructure Project for Climate Research in Europe

/ prism

OASIS3 User Guide
prism 2-5

Edited by:
S. Valcke, CERFACS

PRISM—Support Initiative
Report No 3

September 2006

Copyright Notice

(© Copyright 2006 by CERFACS

All rights reserved.
No parts of this document should be either reproduced or commercially used without prior

agreement by CERFACS representatives.

How to get assistance?

Assistence can be obtained as listed below.
PRISM documentations can be downloaded from the WWW PRISM web site under the URL.:

<http://prism.enes.org>

Phone Numbers and Electronic Mail Adresses

| Name | Phone | Affiliation | e-mail
Sophie Valcke +33-5-61-19-30-76 CERFACS oasishelp(at)cerfacs.fr

Contents

1 Acknowledgements 1
2 Introduction 3
2.1 Step-by-step use of OASIS3 L 3

3 The OASIS3 sources 4
4 Interfacing a model with the PSMILe library 5
4.1 Initialisation e e 6
4.2 Griddatafiledefinitiono 6
4.3 Partition definition L. 8
4.3.1 Serial (nopartition) e e e e 8

432 Applepartition e e 8

433 Boxpartition e e e e e e 8

4.3.4 Orange partition oL e e e e e e e 10

4.4 1/O-coupling field declaration 11
4.5 Endofdefinition phase L e 12
4.6 Sending and receiving actions Lo e e e 12
4.6.1 Sendingacoupling field 12

4.6.2 Receivingacoupling field Lo 13

4.6.3 Auxiliary routines L e e 13

47 Termination e e e e e e e e e e e e 14
4.8 Coupling algorithms - SEQ and LAGconcepts i 15
4.8.1 Thelagconcept e 15

4.8.2 Thesequence conCept« . . Lot e e e e e 18

4.8.3 A mix of lag and sequence: the sequential coupled model 18

4.8.4 Mixing sequential and parallel runs using pri sm put restart proto 21

5 The OASIS3 configuration file namcouple 22
5.1 Anexample of asimple namcouple 22
5.2 First section of namcouple file 24

5.3 Second section of namcouple file Lo 26
5.3.1 Second section of namcouple for EAIRTED , AN LARY and EXPQJT fields . . 26

5.3.2 Second section of namcouple for | GNORED , I GNQJT , and QJIPUT fields 27

5.3.3 Second section of namcouple for INFUT fields 28

6 The transformations and interpolations in OASIS3 29
6.1 Using OASIS3 in the interpolator-only mode 29
6.2 The time transformations L 30

6.3 The pre-processing transformations L. 30
6.4 Theinterpolation L 32

CONTENTS

6.5 The “cooking” stage e 38
6.6 The post-processing L e e e 40
OASIS3 auxiliary data files 41
7.1 Fieldnamesand units L. 41
7.2 Griddatafiles e 41
7.3 Coupling restart files L 43
74 Inputdatafiles. L. 43
7.5 Transformation auxiliary datafiles L L oL 44

7.5.1 Auxiliary data files for EXTRAP N NENN | EXTRAP VA GHT , | NTHRP SLRFMEH s

| NTER?Y GALBS AN ,MAC ,and3BRD o 44

7.5.2 Auxiliary data filesfor HLLING 45

7.5.3 Auxiliary datafilesfor SRPR 45
Compiling and running OASIS3 46
8.1 Compiling OASIS3 and TOYCLIM o . 46
8.1.1 Compilation with TopMakefileOasis3 46

8.1.2 CPPkeys o 47

8.2 Running OASIS3 in coupled mode with TOYCLIM 48
8.2.1 TOYCLIM description v v v v v v ittt et e e e 48

8.2.2 Running TOYCLIM using the script run toyclim 51

8.3 Running OASIS3 in interpolator-only mode, 51
8.3.1 The “testinterp” teSt-Case i i e e e e e 53

8.3.2 The “testNONE” test-case v i v i vttt e e e 53

The grid types for the transformations 54
Changes between versions 56
B.1 Changes between 0asi sS3 prism 2 5andoasis3 prism 24 56
B.2 Changes between 0asi S3 _prism 2 4andoasis3 prism 2.3 57
B.3 Changes between 0asi sS3 prism 2 3andoasis3 prism 22 58
B.4 Changes between 0asi S3 _prism 2 2andoasis3 prism 2.1 58
B.5 Changes between 0asis3 prism 2 landoasis3 prism 12 59
Copyright statements 61
C.1 OASIS3 copyright statement 61
C.2 The SCRIP 1.4 copyright statement 61
The coupled models realized with OASIS 62

Chapter 1

Acknowledgements

We would like to thank the main past or present developers of OASIS are (in alphabetical order, with the
name of their institution at the time):

Arnaud Caubel (FECIT/Fujitsu)
Damien Declat (CERFACS)
Veronika Gayler (MPI-M&D)
Josefine Ghattas (CERFACS)
Jean Latour (Fujitsu-Fecit)
Eric Maisonnave (CERFACS)
Elodie Rapaport (CERFACS)
Hubert Ritzdorf (CCRLE-NEC)
Sami Saarinen (ECMWF)
Eric Sevault (Météo-France)
Laurent Terray (CERFACS)
Olivier Thual (CERFACS)
Sophie Valcke (CERFACS)
Reiner Vogelsang (SGI Germany)
We also would like to thank the following people for their help and suggestions in the design of the OASIS
software (in alphabetical order, with the name of their institution at the time):
Dominique Astruc (IMFT)
Sophie Belamari (Météo-France)
Dominique Bielli (Météo-France)
Gilles Bourhis (IDRIS)
Pascale Braconnot (IPSL/LSCE)
Christophe Cassou (CERFACS)
Yves Chartier (RPN)
Jalel Chergui (IDRIS)
Philippe Courtier (Météo-France)
Philippe Dandin (Météo-France)
Michel Déqué (Météo-France)
Ralph Doescher (SMHI)
Jean-Louis Dufresne (LMD)
Jean-Marie Epitalon (CERFACS)

CHAPTER 1. ACKNOWLEDGEMENTS

Laurent Fairhead (LMD)
Marie-Alice Foujols (IPSL)
Gilles Garric (CERFACS)

Eric Guilyardi (CERFACS)
Charles Henriet (CRAY France)
Pierre Herchuelz (ACCRI)
Maurice Imbard (Météo-France)
Luis Kornblueh (MPI-M)
Stephanie Legutke (MPI-M&D)
Claire Lévy (LODYC)

Olivier Marti (IPSL/LSCE)
Claude Mercier (IDRIS)
Pascale Noyret (EDF)

Andrea Piacentini (CERFACS)
Marc Pontaud (Météo-France)
René Redler (NEC-CCRLE)
Tim Stockdale (ECMWF)
Rowan Sutton (UGAMP)
Véronique Taverne (CERFACS)
Jean-Christophe Thil (UKMO)
Nils Wedi (ECMWF)

Chapter 2

| ntroduction

OASIS3 is the direct evolution of the OASIS coupler developed since more than 10 years at CERFACS
(Toulouse, France). OASIS3 is a portable set of Fortran 77, Fortran 90 and C routines. At run-time, OA-
SIS3 acts as a separate mono process executable, which main function is to interpolate the coupling fields
exchanged between the component models, and as a library linked to the component models, the OA-
SIS3 PRISM Model Interface Library (OASIS3 PSMILe). OASIS3 supports 2D coupling fields only. To
communicate with OASIS3, directly with another model, or to perform I/O actions, a component model
needs to include few specific PSMILe calls. OASIS3 PSMILe supports in particular parallel communica-
tion between a parallel component model and OASIS3 main process based on Message Passing Interface
(MP]) and file I/O using the mpp-io library from GFDL. Portability and flexibility are OASIS3 key design
concepts. OASIS3 has been extensively used in the PRISM demonstration runs and is currently used by
approximately 15 climate modelling groups in Europe, USA, Canada, Australia, India and Brasil. The
current OASIS3 version and its toy coupled model TOYCLIM were compiled and run on NEC SX6, IBM
Power4 and Linux PC cluster, and previous OASIS3 versions were run on many other platforms.

2.1 Step-by-step use of OASIS3

To use OASIS3 for coupling models and/or perform 1/O actions, one has to follow these steps:

1. Obtain OASIS3 sources. (See chapter 3).

2. Identify the coupling or I/O fields and adapt the component models to allow their exchange with the
PSMILe library based on MPI1 or MPI2 message passing'. The PSMILe library is interfaced with
the npp _i 0 library from GFDL (2) and therefore can be used to perform I/O actions from/to disk
files. For more detail on how to interface a model with the PSMILe, see chapter 4.

The TOYCLIM coupled model gives a practical example of a coupled model; the sources are given
in directories / pri smsrc/ nod/ toyat m /toyoce, /toyche ;more detail on TOYCLIM
and how to compile and run it can be found in chapter 8.

3. Define all coupling and I/O parameters and the transformations required to adapt each coupling field
from its source model grid to its target model grid; prepare OASIS3 configuring file namcouple (See
chapter 5). OASIS3 supports different interpolation algorithms as is described in chapter 6.

4. Generate required auxiliary data files. (See chapter 7).

5. Compile OASIS3, the component models and start the coupled experiment. Chapter 8 describes
how to compile and run OASIS3 and the TOY CLIM coupled model.

The appendix D lists (some of) the coupled models realized with OASIS within the past 5 years or so.
If you need extra help, do not hesitate to contact us (see contact details on the back of the cover page).

The SIPC, PIPE and GMEM communication techniques available in previous versions should still work but are not main-
tained anymore and were not tested.

Chapter 3

The OASI S3 sources

The sources and data of OASIS3, all related libraries, and TOYCLIM coupled model are available from

CERFACS CVS server al ter

the most recent OASIS3 tag, please contact us (see contact details on the back of the cover page).

and from CERFACS anonymous ftp.
The CVS repository is / hone/ oasi s/ PR

SVCVS. To obtain the CVS login and password as well as

Note that OASIS3 is temporarily released without the corresponding PRISM Standard Compile Envi-
ronment and Running Environment (SCE/SRE); they will be included when the migration from CVS to

Subversion will be realized at CERFACS.

OASIS3 directory structure follows the PRISM standard one:

- prisndata/tes tinterp data and results for OSS3 in node NNE
[toyclim data and results for TOMIM coupled nodel
- prisnisrc/lib/ ana sg GABS AN interpolation library
[anai sm S RMEH interpolation library
/clim QGIMM 1-MA 2 conmuni cat i on library
/fscint INTER® interpol ation library
/npp_io I/O library
/ NAG dunmi es Dumy library for NAG conpiler
/psml e PRSM System Mdel Interface Library
/scrip SRR interpolation library
- prisnisrc/ nod/ oasi s3/src O3 nain code
/doc ONS3 docunentation
futil Uilities to copile O8&S3
/toyatm TOAIM conponent nodel 1
/toyoce TO@IM conponent nodel 2
/ toyche TOAIM conponent nodel 3
- prismutil/run ni ng/t est interp envi r onnent to test O S3 interpolation
/test NN (interpolator-o ny node NN
/toyclim envi ronnent to run the TO/AIM toynodel

Chapter 4

|nterfacing a model with the PSMILe
library

Atrun-time, OASIS3 acts as a separate mono process executable which drives the coupled run, interpolates
and transforms the coupling fields. To communicate with OASIS3 or directly between the component
models, different communication techniques have been historically developed. The technique used for
one particular run is defined by the user in the configuration file namcouple (see section 5). In OASIS3,
the CLIM communication technique based on MPI1 or MPI2 message passing and the associated model
interface library PSMILe, should be used'. For a practical toy model using the PSMILe library, see the
sources in /prismisrc/nod /t oyatm, /toyche, /toyoce and more details in chapter 8.

To communicate with OASIS3 or directly with another component model using the CLIM-MPI1/2 com-
munication technique, or to perform I/O actions, a component model needs to be interfaced with the
PRISM System Model Interface library, PSMILe, which sources can be found in pri smisrc/lib/p smil e
directory. PSMILe supports:

e parallel communication between a parallel component model and OASIS3 main process,
e direct communication between two parallel component models when no transformations and no
repartitioning are required,
e automatic sending and receiving actions at appropriate times following user’s choice indicated in
the namcouple,
e time integration or accumulation of the coupling fields,
e 1/O actions from/to files.
To adapt a component model to PSMILe, specific calls of the following classes have to be implemented
in the code:
1. Initialisation (section 4.1)
Grid data file definition (section 4.2)
Partition definition (section 4.3)
1/0O-coupling field declaration (section 4.4)
End of definition phase (section 4.5)

S

I/O-coupling field sending and receiving (section 4.6)
7. Termination (section 4.7)
Finally, in section 4.8, different coupling algorithms are illustrated, and explanations are given on how to

reproduce them with PSMILe by defining the appropriate indices of lag and sequence for each coupling
field.

The SIPC, PIPE and GMEM communication techniques available in previous versions should still work but are not main-
tained anymore and were not tested.

6 CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

4.1 Initialisation

All processes of the component model initialise the coupling and, if required, retrieve a local communica-
tor for the component model internal parallelisation.

e LEE nod _prism _proto
Module to be used by the component models.
e CAL prism_nit _conp jproto (conpid, nodel _nane, ierror)

—conpid [INEER QJN] : component model ID
— nodel _nane [CHARACTER'G; IN :name of calling model (as in namcouple)
—ierror [INEIR QJI] : returned error code.

Routine called by all component model processes, which initialises the coupling.?
e CAL prism get locacoom proto (loca _conm ierror)

— local _comm [NEER QJI] : value of local communicator
—ierror [INEIR QJI] : returned error code.

For CLIM-MPI1 communication technique: routine called by all model processes to get the value
of a local communicator to be used by the model for its internal parallelisation.

In fact, with CLIM-MPI1, all component models started in a pseudo-MPMD mode share automati-
cally the same MPI_.COMM _WORLD communicator. Another communicator has to be used for the
internal parallelisation of each model. OASIS3 creates this model local communicator following a
“coloring scheme”; its value is returned as the first argument of prism_get_localcomm _proto routine.

With CLIM-MPI2, the communicator MPI_COMM _WORLD will be returned as local communica-
tor.

Besides that, the differences between using PSMILe with MPI1 or MPI2 message passing are
— The $SCHANNEL in the namcouple; see section 5.2.

— The way the models are started. With MPI2, only OASIS3 needs to be started at the command
line; it will then spawn the component models at the beginning of the run. With MPI1, models
have to be started by the user in a pseudo-MPMD mode; the way to do this depends on the
computing platform. For more details, see section ??.

4.2 Grid data file definition

The grid data files grids.nc, masks.nc and areas.nc must be created by the user before the run or can be
written directly at run time by the master process of each component model.

If written by the component models, the writing of those grid files is driven by OASIS3 main process. It
first checks whether the binary file grids or the netCDF file grids.nc exists (in that case, it is assumed that
areas or areas.nc and masks or masks.nc files exist too), or if writing is needed. If grids or grids.nc exists,
it must contain all grid information from all models; if it does not exist, each model must write its grid
definition in the grid data files.

The coupler sends the information on whether or not writing is needed to the models following an OA-
SIS internal order (below prism_start_grids_writing). If no writing is needed, nothing happens when
calling the following prism_write_xxxx routines. If writing is needed, the first model creates the files,
writes the data arrays (with prism wite _grid , prism wite _corner , prism wite _nask ,
prism wite _area calls), and then sends a termination flag to the coupler (below

>The model may call MPI_Init explicitly, but if so, has to call it before calling prism _init _conp _proto ;in this case, the
model also has to call MPI_Finalize explicitly, but only after calling pri sm _terninate _proto .

4.2. GRID DATA FILE DEFINITION 7

prism _termnate _grids witing call). The coupler will send the starting flag to the next model;
this ensures that only one model accesses the files at a time.

This section describes the PSMILe routines that may be called by the master process of each component
model to write, at run time, the whole grid information to the grid data files. These routines have to be
called just after prism init _conp proto .

The TOYCLIM coupled model uses those routines to write its grid data files if gri dsw=1 in the running
script run _toyclim (see section ?7?).
e LBEE nod _prism grids witing
Module to be used by the component model to call grid writing routines.
e CAL prism start grids witing (flag)
- flag [INEER QJI] : returns 1/0 if grids writing is needed/not needed
Initialisation of grids writing.
e CAL prism_wite grid (cgrid, nx, ny, lon, lat)
cogrid [CGHARCTER4; IN : grid name prefix (see 5.3
nx [| NTEGER IN : grid dimension in x-direction
ny [INEER IN : grid dimension in y-direction
lon [REAL, DO MENH ONnx, ny); IN :array of longitudes (degrees East)
lat [REAL, DO MENH ONnx, ny); IN :array of latitudes (degrees North)

Writing of the model grid longitudes and latitudes. Longitudes must be given in degrees East in
the interval -360.0 to 720.0. Latitudes must be given in degrees North in the interval -90.0 to 90.0.
Note that if some grid points overlap, it is recommended to define those points with the same number
(e.g. 90.0 for both, not 450.0 for one and 90.0 for the other) to ensure automatic detection of overlap
by OASIS (which is essential to have a correct conservative remapping S.(H PR QNERV | see
section 6.4).

e CAL prism _wite _corner (cgrid, nx, ny, nc, clon, clat)

cogrid [CGHARCIER4; IN : grid name prefix

nx [INTEER IN : grid dimension in x-direction

ny [INEER IN : grid dimension in y-direction

nc [1NEER IN :number of corners per grid cell (4)

lon [REA, OMEBNHON (nx,ny,nc);IN : array of corner longitudes (in degrees East)
laa [REAL, DOMEBNH N (nx,ny,nc);IN : array of corner latitudes (in degrees North)

Writing of the grid cell corner longitudes and latitudes (counterclockwise sense). Longitudes must
be given in degrees East in the interval -360.0 to 720.0. Latitudes must be given in degrees North
in the interval -90.0 to 90.0. Note also that cells larger than 180.0 degrees in longitude are not sup-
ported. Writing of corners is optional as corner information is needed only for some transformations
(see section 7.2). If called, prism_write_corners needs to be called after prism_write _grids.

e CAL prism_wite _mask (cgrid, nx, ny, nask)
corid [GHARCIER4; IN : grid name prefix
nx [INTEER IN : grid dimension in x-direction
ny [INEER IN : grid dimension in y-direction
— mask [NTEGER O MENE QN nx, ny) ;IN :mask array (0 - not masked, 1 - masked)
Writing of the model grid mask.
e CAL prism_wite .area (cgrid, nx, ny, area)
—corid [GARCIER4; IN : grid name prefix

8 CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

- nx [INEER IN : grid dimension in x-direction

- ny [INEER IN : grid dimension in y-direction

—aea [REAL, DOMIMNEONNX N y) ; IN :array of grid cell areas
Writing of the model grid cell areas. Writing of areas is optional as area information is needed only
for some transformations (see section 7.2).

e CAL prism _termnate _grids witing()

Termination of grids writing. A flag stating that all needed grid information was written will be sent
to OASIS3 main process.

4.3 Partition definition

When a component of the coupled system is a parallel code, each coupling field is usually scattered among
the different processes. With the PSMILe library, each process sends directly its partition to OASIS3 main
process, or directly to the other component model if no transformation nor repartition is required. To do
s0, each process implied in the coupling has to define its local partition in the global index space.
e LBEE nod _prism _def partition _proto
Module to be used by the component model to call pri sm def partition _proto .
e CAL prism def partition proto (il part id, igparal, ierror)
— il _part Jd [INEER QJI] : partition ID
—ig_para [INEER OMENE ON @), IN : vector of integers describing the local
partition in the global index space
—ierror [INEER QJI] : returned error code.
The vector of integers describing the process local partition, i g paral , has a different expression de-

pending on the type of the partition. In OASIS3, 4 types of partition are supported: Serial (no partition),
Apple, Box, and Orange.

4.3.1 Serial (no partition)

This is the choice for a monoprocess model. In this case, we have i g paral (1: 3)
e ig paral (1) =0 (indicates a Serial “partition”)
eigpara(2) =0
e ig paral (3) =the total grid size.

4.3.2 Apple partition

Each partition is a segment of the global domain, described by its global offset and its local size. In this
case, we have i g paral (1. 3)

e ig paral (1) =1 (indicates an Apple partition)

e ig paral (2) =the segment global offset

e ig._paral (3) = the segment local size
Figure 4.1 illustrates an Apple partition over 3 processes.

4.3.3 Box partition

Each partition is a rectangular region of the global domain, described by the global offset of its upper left
corner, and its local extents in the X and Y dimensions. The global extent in the X dimension must also
be given. In this case, we have i g paral (1: 5)

4.3. PARTITION DEFINITION

EEEE] [O0Om [0
J0000, memER 0000
10000 00000 mmmmm

1l

| |
_/IHa

Proc 1: Proc 2: Proc 3:
local offset = 0 local offset = 4 local offset = 10
local size=4 local size=6 local size=5

Figure4.1: Apple partition

CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

1 RN | | e
BRI DOEER 0000 g
O DEOOE A

Proc 1. Proc 2: Proc 3:

local offset =0 local offset =2 local offset = 10
local x extent =2 local x extent = 3 local x extent =5
local y extent = 2 local y extent =2 local y extent = 1

Figure4.2: Box partition

e ig paral (1) =2 (indicates a Box partition)
ig_paral (2) = the upper left corner global offset
ig_paral (3) =the local extent in X

ig_paral (4 = the local extent in Y

ig_paral (5 = the global extent in X.

Figure 4.2 illustrates a Box partition over 3 processes.

4.3.4 Orange partition

Each partition is an ensemble of segments of the global domain. Each segment is described by its global
offset and its local extent. In this case, we have ig paral (1N where N = 2 + 2*nuniber of
segnents 4.
e ig paral (1) =3 (indicates a Orange partition)
e ig paral (2) = the total number of segments for the partition (limited to 200 presently, see note
for ig_paral(4) for Box partition above)
e ig paral (3) = the first segment global offset

3The maximum value of the local extent in Y s presently 338; it can be increased by mod-
ifying the value of Qim_MxSegnents in prismsrc/lib/clinisrc/ nod <limPF0 and in
prismsrc/lib/psnil el src/nod prism proto. 0 and by recompiling Oasis3 and the PSMILe library.

*As for the Box partition, the maximum number of segments is presently 338; it can be increased by modifying the value of
aim _MxSegnent s

4.4. 1/0-COUPLING FIELD DECLARATION

Proc 1: 1% segment offset =0

BEEER e e ot =7

2nd segment size=2
3rd segment offset = 10
3rd segment size=3

Figure4.3: Orange partition for one process

e ig paral (4 = the first segment local extent
ig_paral (5 =the second segment global offset
ig_paral (6) = the second segment local extent

ig_paral (N1) = the last segment global offset
e ig paral (N = the last segment local extent

Figure 4.3 illustrates an Orange partition with 3 segments for one process. The other process partitions
are not illustrated.

4.4 1/0O-coupling field declaration

Each process implied in the coupling declares each field it will send or receive during the simulation.

e CAL prism def var proto(var id, nane, il part id, var _nodins, ki nout ,
var _actual _shape, var type, ierror)

—var (id [INEIR QJI] : coupling field ID

- nane [GHARACTER'S; IN :field symbolic name (as in the namcouple)
— il _part _.id [INTEGR IN :partition ID (returned by pri sm def partition _proto)
— var _noding [NIEGER DMENS AN 2); IN :varnodims(1) is the rank of field ar-

ray (1 or 2); var_nodims(2) is the number of bundles (always 1 for OASIS3).

CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

— kinout [INEGER IN : PRSM In for fields received by the model, or PR SV _Qut
for fields sent by the model

— var _actual _shape [INEIER O MENS O\ 2*var nodi ns(1)); IN :vectorof
integers giving the minimum and maximum index for each dimension of the coupling field ar-
ray; for OASIS3, the minimum index has to be 1 and the maximum index has to be the extent
of the dimension.

— var type [INEER IN :type of coupling field array; put PR M Real for single or
double precision real arrays>. No automatic conversion is implemented; therefore, all coupling
fields exchanged through OASIS3 main process must be of same type®.

ierror [INTEGER QJT] : returned error code.

4.5 End of definition phase

Each process implied in the coupling closes the definition phase.
e CAL prism _enddef _proto(ierror)
— 1ierror [INTEGER; OUT]: returned error code.

4.6 Sending and receiving actions

4.6.1 Sending a coupling field

In the model time stepping loop, each process implied in the coupling sends its part of the I/O or coupling
field.
e LEE nod _prism _put _proto
Module to be used by the component model to call pri sm put proto .
e CAL prism _put proto(var id, date, field array, info)
—var id [INEIER IN :field ID (from corresponding prism_def _var_proto)
— date [INEGER IN : number of seconds in the run at the beginning of the timestep
— field array [REAL, IN :1/O or coupling field array
—info [INEER QJIM] : returned info code i.e.

* PRISM_Sent(=4) if the field was sent to another model (directly or via OASIS3 main
process)

* PRISM_LocTrans (=5) if the field was only used in a time transformation (not sent, not
output)

+ PRISM_ToRest (=6) if the field was written to a restart file only
+ PRISM_Output (=7) if the field was written to an output file only

+ PRISM_SentOut (=8) if the field was both written to an output file and sent to another
model (directly or via OASIS3 main process)

+* PRISM_ToRestOut (=9) if the field was written both to a restart file and to an output file.
* PRISM_Ok (=0) otherwise and no error occurred.

SPRISM standard is to exchange coupling fields declared REAL(ki nd=SHECTED FEAL _KINX(12, 307)) . By
default, all real variables are declared as such in OASIS3. To exchange single precision coupling fields, OA-
SIS3 has to be compiled with the pre-compiling key use_realtype_single, the coupling fields must be declared
REAL(ki nd=SH_ECTED REAL _KINO(6, 37)) in the component models (see also chapter 8).

SCoupling fields exchanged directly between two component models can have a type different from the ones exchanged
through OASIS3 main process, as long as they are single or double precision real arrays in both models.

4.6. SENDING AND RECEIVING ACTIONS

This routine may be called by the model at each timestep. The sending is actually performed only if the
time obtained by adding the field lag (see 4.8) to the argument date corresponds to a time at which it
should be activated, given the coupling or I/O period indicated by the user in the namcouple (see section
5). A field will not be sent at all if its coupling or I/O period indicated in the namcouple is greater than the
total run time.

If a local time transformation is indicated for the field by the user in the namcouple (INSTANT, AVER-
AGE, ACCUMUL, T_MIN or T_.MAX, see section 0), it is automatically performed and the resulting field
is finally sent at the coupling or I/O frequency.

For a coupling field with a positive lag (see 4.8), the OASIS3 restart file (see section 7.3) is automatically
written by the last prism put proto call of the run, if its argument date + the field lag corresponds
to a coupling or I/O period. To force the writing of the field in its coupling restart file, one can use
prism put _restart _proto (see below).

This routine can use the buffered MPI_BSend (by default) or the standard blocking send MPI Send (if
NBE\D is specified in the namcouple -see 3AHNNEL section 5.2) to send the coupling fields.

4.6.2 Receiving a coupling field

In the model time stepping loop, each process implied in the coupling receives its part of the I/O-coupling
field.
e LBE nod _prism _get _proto
Module to be used by the component model to call prism get proto .
e CAL prism get proto(var 1id, date, field array, ierror)
—var id [INEER IN :field ID (from corresponding prism_def var_proto)
— date [INEGER IN : number of seconds in the run at the beginning of the timestep
- field array [REAL, QJI :1/O or coupling field array
—info [INTEER QJN] : returned info code

+ PRISM_Recvd(=3) if the field was received from another model (directly or via OASIS3
main process)

+ PRISM_FromRest (=10) if the field was read from a restart file only (directly or via OA-
SIS3 main process)

* PRISM_Input (=11) if the field was read from an input file only

* PRISM_RecvOut (=12) if the field was both received from another model (directly or via
OASIS3 main process) and written to an output file

+* PRISM_FromRestOut (=13) if the field was both read from a restart file (directly or via
OASIS3 main process) and written to an output file

+* PRISM_Ok (=0) otherwise and no error occurred.
This routine may be called by the model at each timestep. The date argument is automatically analysed
and the receiving action is actually performed only if dat e corresponds to a time for which it should be

activated, given the period indicated by the user in the namcouple. A field will not be received at all if its
coupling or I/O period indicated in the namcouple is greater than the total run time.

4.6.3 Auxiliary routines

e CAL prism _put inquire(var 1id, date, info)
—var id [INEER IN :field ID (from corresponding prism_def _var_proto)

CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

— date [INEGER IN : number of seconds in the run at the beginning of the timestep
—info [INEER QJM] : returned info code.
This routine may be called at any time to inquire what would happen to the corresponding field (i.e. with

same var _id and at same dat e) below the corresponding pri sm put proto . The possible value of
the returned info code are as for prism put _proto :

o PRISM_Sent(=4) if the field would be sent to another model (directly or via OASIS3 main process)
o PRISM LocTrans (=5) if the field would be only used in a time transformation (not sent, not output)
o PRISM_ToRest (=6) if the field would be written to a restart file only

e PRISM_Output (=7) if the field would be written to an output file only

o PRISM_SentOut (=8) if the field would be both written to an output file and sent to another model
(directly or via OASIS3 main process)

o PRISM_ToRestOut (=9) if the field would be written both to a restart file and to an output file.
e PRISM_Ok (=0) otherwise and no error occurred.
This is useful when the calculation of the corresponding field array is CPU consuming and should
be avoided if the field is not effectively used below the prism put proto .
e CAL prism _put restart _proto(var 1id, date, ierror)
—var id [INEER IN :field ID (from corresponding prism_def _var_proto)
— date [INEER IN : number of seconds in the run at the beginning of the timestep
—info [INTEER QJN] : returned error code (should be PRISM ToRest=6 if the restart

writing was successful)

This routine forces the writing of the field with corresponding var id in its coupling restart file (see
section 7.3). If a time operation is specified for this field, the value of the field as calculated below the last
prism _put _proto is written. If no time operation is specified, the value of the field transferred to the
last prism _put _proto is written.
e CAL prism get freq (var did, period, ierror)

—var (id [INEER IN :field ID (from corresponding prism_def_var_proto)

— period [INEER QJ1] : period of coupling (in number of seconds)

—ierror [INEER QJN] : returned error code

This routine can be used to retrieve the coupling period of field with corresponding var . d, as defined in
the namcouple (see also section 5.3.1).

4.7 Termination

e CAL prism _termnate _proto(ierror)
—ierror [INTEGR QJT] : returned error code.

All processes must terminate the coupling by calling prism termnate _proto 7 (normal ter-
mination). Oasis will terminate after all processes called prism_terminate_proto. With MPI2,
the run may be considered finished when Oasis terminates; to avoid problem, place the call to
prism_terminate_proto at the very end in the component model code.

e CAL prism _abort _proto(conpid, routine _nane, abort _nessage)
—conpid [INEER IN : component model ID (from prism _init_comp _proto)
— routine _nang; IN :name of calling routine

"If the process called M _Init (before calling prism _init _conp _proto), it mustalsocall M _Fnalize explicitly,
but only after calling prism _terninate _proto .

4.8. COUPLING ALGORITHMS - SEQ AND LAG CONCEPTS

— abort _nessage; IN : message to be written out.

If a process needs to abort (abnormal termination), it must do so by calling pri sm abort proto .
This will ensure a proper termination of all processes in the coupled model communicator. This
routine writes the name of the calling model, the name of the calling routine, and the message to the
job standard output (stdout).

4.8 Coupling algorithms - SEQ and LAG concepts

Using PSMILe library, the user has full flexibility to reproduce different coupling algorithms. In the com-
ponent codes, the sending and receiving routines, respectively prism put proto andprism get proto ,
can be called at each model timestep, with the appropriate dat € argument giving the actual time (at the be-
ginning of the timestep), expressed in “number of seconds since the start of the run”. This date argument

is automatically analysed by the PSMILe and depending on the coupling period, the lag and sequencing
indices (LAG and SEQ), chosen by the user for each coupling field in the configuration file namcouple,
different coupling algorithms can be reproduced without modifying anything in the component model
codes themselves. The lag and sequence concepts and indices are explained in more details here below.
These mechanisms are valid for fields exchanged through OASIS3 main process and for fields exchanged
directly between the component models.

4.8.1 The lag concept

If no lag index or if a lag index equal to O is given by the user in the namcouple for a particular coupling
field, the sending or receiving actions will actually be performed, below the prism put proto called
in the source model or below the prism get proto called in the target model respectively, each time
the date arguments on both sides match an integer number of coupling periods.

Tomatchaprism _put _proto called by the source model at a particular date withaprism get proto
called by the target model at a different date, the user has to define in the namcouple an appropriate lag in-
dex, LAG, for the coupling field(see section 5). The value of the LAG index must be expressed in “number
of seconds”; its value is automatically added to the prism put proto date value and the sending action
is effectively performed when the sum of the date and the lag matches an integer number of coupling peri-
ods. This sending action is automatically matched, on the target side, with the receiving action performed
when the prism _get proto date argument equals the same integer number of coupling periods.

1. LAG concept first example
A first coupling algorithm, exploiting the LAG concept, is illustrated on figure 4.4.

On the 4 figures in this section, short black arrows correspond to prism put proto or
prism get proto called in the component model that do not lead to any sending or receiv-
ing action; long black arrows correspond to prism put proto or prism get proto called
in the component models that do effectively lead to a sending or receiving action; long red arrows
correspond to prism put proto or prism get proto called in the component models that
lead to a reading or writing of the coupling field from or to a coupling restart file (either directly or
through OASIS3 main process).

During a coupling timestep, model A receives F» and then sends F7; its timestep length is 4. During
a coupling timestep, model B receives F) and then sends F5; its timestep length is 6. F7 and Fy
coupling periods are respectively 12 and 24. If F}/F5 sending action by model A/B was used at a
coupling timestep to match the model B/A receiving action, a deadlock would occur as both models
would be initially waiting on a receiving action. To prevent this, F'; and F5> produced at the timestep
before have to be used to match respectively the model B and model A receiving actions.

CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

Model B timestep=6
0 12 18 24 30 120

FATATA T A

F

i FlT le FlT le FJ in FlT le FlT le FJ le F1 le le FlT

0 4 T8 12 16 20 24 28 120

Model A timestep =4 ———» prism_put_proto/prism_get_proto leading to
writing/reading to/from coupling restart file

Cpl_perio d(Fl) - 12 —— prism_put_proto/prism_get_proto leading to

. _ sending/receiving actions
Cpl—pe”Od(Fz) =24 —» prism_put_proto/prism_get_proto not leading to
LAG(F1) = 4

sending/receiving actions
LAG(F2) =6

Figure4.4: LAG concept first example

4.8. COUPLING ALGORITHMS - SEQ AND LAG CONCEPTS

Model B timestep=6
0 12 4 30

L 16 118 21 | L 12\0
A
F e le FlTFsT Fo|Fif Fs le FlT FgT Fo| F1|Fs le FlT FsT F

"k FlT in FsT Fi| F2| F3 FlT
0 6 12

Model A timestep=6

F1| F2| F3 F1
R KA
i3 24 120

——p prism_put_proto/prism_get_proto leading to
writing/reading to/from coupling restart file

Cpl_per'Od(Fl) =12 ——— prism_put_proto/prism_get_proto leading to
Cpl_period(F2) = 12 sending/receiving actions

Cpl_period(Fs) = 12 _» prism_put_proto/prism_get_proto NOT leading to
LAG(Fl) =6 sending/receiving actions

LAG(F2) = 6

LAG(F3) =0

Figure4.5: LAG concept second example

This implies that a lag of respectively 4 and 6 seconds must be defined for F'; and F5. For F,
the prism _put _proto performed at time 8 and 20 by model A will then lead to sending ac-
tions (as 8 + 4 = 12 and 20 + 4 = 24 which are coupling periods) that match the receiving ac-
tions performed at times 12 and 24 below the pri sm get proto called by model B. For F, the
prism _put proto performed at time 18 by model B then leads to a sending action (as 18 + 6
= 24 which is a coupling period) that matches the receiving action performed at time 24 below the
prism _get proto called by model A.

At the beginning of the run, as their LAG index is greater than 0, the first prism get proto will
automatically lead to reading F} and F5 from their coupling restart files. The user therefore have
to create those coupling restart files for the first run in the experiment. At the end of the run, F
having a lag greater than O, is automatically written to its coupling restart file below the last F
prism put proto if the date + Fj lag equals a coupling time. The analogue is true for Fj.
These values will automatically be read in at the beginning of the next run below the respective
prism get _proto .

2. LAG concept second example

A second coupling algorithm exploiting the LAG concept is illustrated on figure 4.5. During its
timestep, model A receives F5, sends F3 and then F1; its timestep length is 6. During its timestep,
model B receives F7, receives F3 and then sends Fy; its timestep length is also 6. F', F5 and F3
coupling periods are both supposed to be equal to 12.

For F} and F5 the situation is similar to the first example. If F}/F5 sending action by model A/B
was used at a coupling timestep to match the model B/A receiving action, a deadlock would occur

CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

as both models would be waiting on a receiving action. To prevent this, F; and F5 produced at the
timestep before have to be used to match the model A and model B receiving actions, which means
that a lag of 6 must be defined for both F; and F5. For both coupling fields, the pri sm _put _proto
performed at times 6 and 18 by the source model then lead to sending actions (as 6 + 6 = 12 and 18
+ 6 = 24 which are coupling periods) that match the receiving action performed at time 12 and 24
below the prism get proto called by the target model.

For F3, sent by model A and received by model B, no lag needs to be defined: the coupling field
produced by model A at the coupling timestep can be “consumed” by model B without causing a
deadlock situation.

As in the first example, the prism get proto performed at the beginning of the run for Fy
and F5, automatically read them from their coupling restart files, and the last pri sm put proto
performed at the end of the run automatically write them to their coupling restart file. For F3, no
coupling restart file is needed nor used as at each coupling period the coupling field produced by
model A can be directly “consumed” by model B.

We see here how the introduction of appropriate LAG indices results in receiving, below the
prism get proto in the target model, coupling fields produced, below the pri sm put proto
by the source model, the timestep before; this is, in some coupling configurations, essential to avoid
deadlock situations.

4.8.2 The sequence concept

To exchange the coupling fields going through OASIS3 main process (i.e. with status EXPORTED, AUX-
ILARY, or EXPOUT, see section 5), in a given order at each coupling timestep, a sequence index SEQ
must be defined for each of them. This is not required for I/O fields or for coupling fields exchanged
directly between the component models, i.e. with status IGNOUT, INPUT or OUTPUT. SEQ gives the
position of the coupling field in the sequence.

A coupling algorithm, showing the SEQ concept, is illustrated on figure 4.6. All coupling field produced
by the source model at the coupling timestep can be “consumed” by the target model at the same timestep
without causing any deadlock situation; therefore, LAG = 0 for all coupling fields. However, at each
coupling timestep, a particular order of exchange must be respected; F'; must be received by model A
before it can send F5, which in turn must be received by model B before it can send F3. Therefore, SEQ
=1, 2, 3 must be defined respectively for F}, F» and Fj. As all fields can be consumed at the time they
are produced (LAG=0 for all fields), there no reading/writing from/to coupling restart files.

4.8.3 A mix of lag and sequence: the sequential coupled model

One can run the same component models simultaneously or sequentially by defining the appropriate LAG
and SEQ indices. In the example illustrated on figure 4.7, the models perform their pri sm put proto
and prism _get _proto calls exactly as in the first lag example above: model A receives F, and then
sends F1; its timestep length is 4. During a coupling timestep, model B receives F'; and then sends F5b; its
timestep length is 6. F and F5 coupling periods are both 12. By defining a LAG index of -8 for F, the
models will now run sequentially.

As the LAG for F3 is positive (6), a reading of F3 in its coupling restart file is automatically performed
below the initial prism get proto . As the LAG for F} is negative (-8), no reading from file is per-
formed initially and model B waits; at time 8, a sending action is effectively performed below model
A Fy prism put proto (as 8 + LAG (-8) = 0 which is the first coupling timestep) and matches the
initial model B F} prism _get _proto . Below the last model A F prism _put proto of the run
at time 116, a sending action is effectively performed, as 116 + LAG(—8) = 108 is a coupling pe-
riod (as the LAG is negative, the field is not written to its coupling restart file). Below the last model

4.8. COUPLING ALGORITHMS - SEQ AND LAG CONCEPTS

Model B timestep =6

0 6 12 18 24 30 1 120

Fi F ZT Fi FliFZT Fsi Fi F ZT F?l Fi F ZT F?l FliFZT Fsi
OASIS3 main process

Fi FZT F?l Fli FzT Fsl Fi FZT F?l Fll FzT Fsi Fll FZT F?l Fll FzT Fsi

0 6 12 18 24 | 120

Model A timestep = 6 ———5 prism_put_proto/prism_get_proto leading to

sending/receiving actions
— prism_put_proto/prism_get_proto NOT
leading to sending/receiving actions

Cpl_period(F1) =12 LAG(F1) =0 SEQ(F1) = 1
Cpl_period(F2) =12 LAG(F2) =0 SEQ(F2) =2
Cpl_period(Fs) = 12 LAG(Fs) =0 SEQ(F3) = 3

Figure4.6: The SEQ concept

CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

Model B timestep=6

0 12 108 114 120

T RN

A
E F2
FlT le FlT le F1 FlT le F1
0 4 8§ 12 127716 116120
Model A timestep =4 ———» prism_put_proto/prism_get_proto leading to
writing/reading to/from coupling restart file
Cpl_perio d(Fl) - 12 —— prism_put_proto/prism_get_proto leading to

. _ sending/receiving actions
Cpl_perlod(Fz) =12 —» prism_put_proto/prism_get_proto not leading to
LAG(F1) = -8

sending/receiving actions
LAG(F2) =6
SEQ(F1) = 2
SEQ(F2) =1

Figure4.7: Mix of LAF and SEQ concepts

4.8. COUPLING ALGORITHMS - SEQ AND LAG CONCEPTS

First run:

LAG(F1) =-8 Q 6 12 108 114 120 wmodei B
LAG(F2) =6 AFl Fi FlT F2 1 leFlT F2

SEQ(F1) =2 —
SEQ(F2) =1 file F2

A Restart
. E fileF1
ol | bt ™,
0 12 18 | 120
Next runs: Restart /Fl in TFle TH l

‘ Model B
3 (.
LAG(F)) =4 | |filer1

LAG(F2) =6
tptplbr ko] v
0 4 8 12 16 100

SEQ(F2) =1 fileF2

SEQ(F1) =1 Restart \

12
—— Prism_put_proto/prism_get_proto leading —» prism_put_proto/prism_get_proto not
to writing/reading to/from restart file leading to sending/receiving actions
——5 Prism_put_proto/prism_get_proto leading prism_put_restart leading to writing to
to sending/receiving actions coupling restart file

Figure4.8: An example using prism_put_restart_proto

B F, prism put proto of the run at time 114, a writing of F» to its restart file is performed, as
114 + LAG(6) = 120 is a coupling period and as the LAG is positive.
If the coupling fields are transformed through OASIS3 main process, it is important to indicate a sequence

index. In fact, at each OASIS3 main process coupling timestep, F is necessarily treated after F5. There-
fore, SEQ(F1) = 2and SEQ(F>) = 1.

4.8.4 Mixing sequential and parallel runs using prism _put restart _proto

In the example illustrated on figure 4.8, the models run sequentially for the first run only and then run
simultaneously. For the first run, the LAG and SEQ indices must be defined as in section 4.8.3. After
the first run, the situation is similar to the one of section 4.8.1, and positive LAG must be defined for
Fy and F5. As their lag is positive, their corresponding first pri sm get proto will automatically lead
to reading F and F5 from coupling restart files. In this case, model A has to write F' to its restart file
explicitly by calling prism _put restart _proto (illustrated on the figure by an orange arrow) at the
end of the first run; in fact, F} lag being then negative, such writing is not automatically done below the
last prism put proto of the first run.

Chapter 5

The OASI S3 confi guration fi le namcouple

The OASIS3 configuration file namcouple contains, below pre-defined keywords, all user’s defined infor-
mation necessary to configure a particular coupled run. The namcouple is a text file with the following
characteristics:

o the keywords used to separate the information can appear in any order;
e the number of blanks between two character strings is non-significant;
e all lines beginning with # are ignored and considered as comments.

e blank lines are not allowed.

The first part of namcouple is devoted to configuration of general parameters such as the number of mod-
els involved in the simulation, the number of fields, the communication technique, etc. The second part
gathers specific information on each coupling or I/O field, e.g. their coupling period, the list of transfor-
mations or interpolations to be performed by OASIS3 and their associated configuring lines (described in
more details in section 6), etc.

In the next sections, a simple namcouple example is given and all configuring parameters are described.
The additional lines containing the different parameters required for each transformation are described in
section 6. An example of a realistic namcouple can be found in directory /prismutil/runn ing
/toyclintinput/ nantoupl e.

5.1 An example of a simple namcouple

The following simple namcouple configures a run in which an ocean, an atmosphere and an atmospheric
chemistry models are coupled. The ocean provides only the SOSSTSST field to the atmosphere, which in
return provides the field CONSFTOT to the ocean. One field (COSENHFL) is exchanged directly from
the atmosphere to the atmospheric chemistry, and one field (SOALBEDO) is read from a file by the ocean.

T HE HiE HHE Hi HH T HEE HHEHE T HEE T HE T HE HEHE B 1 HE HE HE
Hrst section

22

5.1. AN EXAMPLE OF A SIMPLE NAMCOUPLE

3 1 arg2
3 1 arg3

3 ocenod at nmod chenod 5 70 99
#
$RUNM ME
432000
#
$I N DATE
00010101
#
™M NFO
NOT
#
SNCEFRT
2
#
$CALTYPE
1
#
HEHHHAHHH R Hit B HHE I HE B B B R 1 B R HEHE R
Second section
#
$STR NG5
#
Feld 1
#
SCBSISST S UEJ 1 86400 5 sstoc.nc BEPORTED
182 149 128 64 toce atno LAG=+14400 SFO+1
P2PO
LCCTRANS GEKN MXAC BLASNBW HEXQIT
#
ABRE
I NT=1
at 31t opa 91 2 48
QONSTANT 273.15
I NT=1
#
Feld 2
#
C\NFTOF SOHEHDDO 6 86400 7 flxat.nc BAORIED
at no toce LAG=H14400 F+1
POP2
LCCTRANS GHEXKN SRR aGEXAT

CHAPTER 5. THE OASIS3 CONFIGURATION FILE NAMCOUPLE

#

ACT ML

I NT=1

€6 \S52Y) LR SCAAR LAILN 10 FRACAREA A RST
I NT=1

#

Held

#

QCEENHAL SCHENHAL 37 86400 1 flda3.nc | GNOJT
at no ano LAG=+7200 FF+H

LGCTRANS

ARNE

#

Held 4

#

SONBHD SOABHD 17 8400 0 SABHAXQOnNC I NPUT
#

T FHE 1 HHE T HHE THE T T A R T A A A A A A A

5.2 First section of namcouple file

The first section of hamcouple uses some predefined keywords prefixed by the $ sign to locate the related
information. The $ sign must be in the second column. The first ten keywords are described hereafter:

e $HMIE :On the line below this keyword is the maximum number of fields that have to be, at one
particular coupling timestep, necessarily exchanged sequentially in a given order. For $SEQMIE
> 1, the position of each coupling field in the sequence has to be given by its SEQ index (see below
and also section 4.8).

e $GHA\NNHL : On the line below this keyword is the communication technique chosen. Choices are
MA1l or MA2 for the CLIM communication technique and related PSMILe library, using MA 1
or MM 2 message passing. To run OASIS3 as an interpolator only, put NONE (see also section 6.1).
The communication techniques available in previous OASIS version, i.e. SPC, A PE , or GVBM
should still work but are not officially supported anymore and were not tested.

To use the AIMMA 2 communication technique, the lines below $CHN\NE. are, e.g. for 3

models:
SCHANNEL

MA2 NBSHED
1 1 argl
3 1 arg2
3 1 ag3

where MA 2 is the message passing used in CLIM and PSMILe, and NBSE\D indicates that
standard blocking send MM _Send should be used in place of the buffered M BSend to send the
coupling fields.!

!'Use the standard blocking send M@ _Send if the coupling fields are necessarily sent and received in the same order, or on
platforms for which Ml _Send is implemented with a mailbox (e.g. VPPs; in this case, make sure that the size of the mailbox
is sufficient). Use the less efficient buffered send M@ _BSend on platforms for which MA _Send is not implemented with a
mailbox if the coupling fields are not sent and received in the same order. Note that below the call to pri sm _enddef _proto ,
the PSMILe tests whether or not the model has already attached to an MPI buffer. If it is the case, the PSMILe detaches from the
buffer, adds the size of the pre-attached buffer to the size needed for the coupling exchanges, and reattaches to an MPI buffer. The
model own call to MA _Buffer _Attach must therefore be done before the call to pri sm _enddef _proto . Furthermore, the
model is not allowed to call MM _BSend after the call to prism _termnate _proto , as the PSMILe definitively detaches

FIRST SECTION OF NAMCOUPLE FILE

If NBSE\D s not specified, the buffered send MM _BSend will be used.

The following lines (one line per model listed on the $\BMIDHL line) indicate for each model the
total number of processes, the number of processes implied in the coupling, and possibly launching
arguments. Here the first model runs on one process which is of course implied in the coupling and
the argument passed to the model is "arg1”; the second and third models run on 3 processes but only
one process is implied in the coupling (i.e. exchanging information with OASIS3 main process),
and the argument passed to the models are respectively “arg2” and “arg3”.

Tousethe AIMMA1 communication technique, the SCHANNEL lines are are as for MA 2 except
that MM 2 is replaced by M 1 and there is no launching arguments?.

e SNAELLS : On the line below this keyword is the total number of fields exchanged and described
in the second part of the namcouple.

o SJB\MME : On the line below this keyword is a GHARACTER +3 or GHARACTER 4 variable giving
an acronym for the given simulation.

e SNBMIH. : On the line below this keyword is the number of models running in the given ex-
periment followed by GHARACTER %6 variables giving their names. Then the user may indicate
the maximum Fortran unit number used by the models. In the example, Fortran units above 55,
70, and 99 are free for respectively the ocean, atmosphere, and atmospheric chemistry models. If
no maximum unit numbers are indicated, OASIS3 will suppose that units above 1024 are free. If
SAHANNEL is NONE, SNBMITH. has to be 0 and there should be no model name and no unit
number.

e SRNM ME : On the line below this keyword is the total simulated time of the run, expressed in
seconds. If 3CHANNEL is NONE , $RINTTME has to be the number of time occurrences of the field
to interpolate from the restart file.

e SN DATE : On the line below this keyword is the initial date of the run. The format is YYYYMMD .
This date is important only for the H LLING transformation and for printing information in OASIS3
log file cplout.

e SMII NFO : If coupling restart files are binary files (see section 7.3), the line below this keyword
indicates if a header is encapsulated or not: it can be YES or NI .

e INGERT : The line below this keyword refers to the amount of information that will be written
to the OASIS3 log file cplout during the run. With 0, there is practically no output written to the
cplout; with 1, only some general information on the run, the header of the main routines, and the
names of the fields when treated appear in the cplout. Finally, with 2, the full output is generated.

e SCALTYFE : This new keyword gives the type of calendar used. For now, the calendar type is im-
portant only if A LLI NG analysis is used for a coupling field in the run and for printing information
in OASIS3 log file cplout. Below this keyword, a number (0, 1 or n) must be indicated by the user:

— 0: a365 day calendar (no leap year)

— 1: a 365 or 366 (leap years) day calendar A year is a leap year if it can be divided by 4;
however if it can be divided by 4 and 100, it is not a leap year; furthermore, if it can be divided
by 4, 100 and 400, it is a leap year.

— n:n > 1 day month calendar.

from the MPI buffer in this routine. See the example in the toyatm model in pri siisr ¢/ nod/ t oyat nisrc

2With MPI1, models have to be started by the user in a pseudo-MPMD mode in the order they are introduced in the nam-
couple. The way to do this depends on the computing platform. With MPI1, OASIS3 main process and the component models
automatically share the same MPI_COMM_WORLD communicator; in this communicator OASIS3 main process is assumed to
have rank 0 and the other component models are assumed to have ranks in the order of which they are introduced in namcouple.
If this is not the case, a deadlock may occur.

CHAPTER 5. THE OASIS3 CONFIGURATION FILE NAMCOUPLE

5.3 Second section of namcouple file

The second part of the namcouple, starting after the keyword $STR NGB , contains coupling information
for each coupling or 1/O field. Its format depends on the field status given by the last entry on the field
first line (EPARTED , IGNDJT or I NPUT in the example above). The field status may be the follow-
ing (AN LARY and EXRRIED are supported by all communication techniques, while the others are
supported only by the PSMILe i.e. the QIMMA1 orQIMMA2 communication technique):

o AN LARY :sent by the source model, received and used by OASIS3 main process for the transfor-
mation of other fields.

o ERRIED : exchanged between component models and transformed by OASIS3 main process.

e BEXPAJT :exchanged, transformed and also written to two output files, one before the sending action
in the source model below the prism put proto call, and one after the receiving action in the
target model below the prism get proto call.

o |GNDRD : exchanged directly between the component models without being transformed by OA-
SIS3 main process. The grid and partitioning of the source and target models have to be identical.

e |AQNAJT : exchanged directly between the component models without being transformed by OA-
SIS3 main process and written to two output files, one before the sending action in the source model
below the prism _put _proto call, and one after the receiving action in the target model below
the prism _get proto call. The grid and partitioning of the source and target models have to be
identical.

e | NPUT :simply read in from the input file by the target model PSMILe below the pri sm get proto
call at appropriate times corresponding to the input period indicated by the user in the namcouple.
See section 7.4 for the format of the input file.

e QUIRUT :simply written out to an output file by the source model PSMILe below the prism put proto
call at appropriate times corresponding to the output period indicated by the user in the namcouple.
The name of the output file (one per field) is automatically built based on the field name and initial
date of the run ($I N DATE).

5.3.1 Second section of namcouple for EAIRTED , AN LARY and EXQJT fields

The first 3 lines for fields with status BAORIED , AN LARY and EXPQAJT are as follows:

SCSITSST SUEJ 1 86400 5 sstoc.nc sstat. nc BEARORIED
182 149 128 64 toce atno LAG=+14400 F=+1
P2PO

where the different entries are:
e Field first line:
— SBSTSST @ symbolic name for the field in the source model (GHARACTER'8). It has to

match the argument nan@ of the corresponding field declaration in the source model; see
prism _def _var Jproto in section 4.4.

— SJEJ : symbolic name for the field in the target model (GHARACTER'8). It has to
match the argument nane of the corresponding field declaration in the target model; see
prism _def _var _proto in section 4.4.

— 1 : index in auxiliary file cf_name_table.txt used by OASIS3 and PSMILe to identify corre-
sponding CF standard name and units (see 7.1).

— 86400 : coupling and/or I/O period for the field, in seconds. (If 3CHANNEL is NONE , put “17.)

5 : number of transformations to be performed on this field.

5.3. SECOND SECTION OF NAMCOUPLE FILE

— sstoc.nc : name of the coupling restart file for the field (GHARACTER'8); it may be a binary
of netCDF file (for more detail, see section 7.3).

— sstat.nc : name of the field output file, may be indicated for NINE (and Pl PE) communication
techniques only. It may be a binary of netCDF file (see section 7.3).

- BARIED : field status.
e Field second line:

— 182 : number of points for the source grid first dimension (optional if a netCDF coupling
restart file is used).

— 149 : number of points for the source grid second dimension (optional if a netCDF coupling
restart file is used).

— 128 : number of points for the target grid first dimension (optional if a netCDF coupling restart
file is used).

— 64 : number of points for the target grid second dimension (optional if a netCDF coupling
restart file is used).

— toce : prefix of the source grid name in grid data files (see section 7.2) (GHARACTER'4)
— atmo : prefix of the target grid name in grid data files (HARACTER'4)

— LAG=+14400 : optional lag index for the field expressed in seconds (LIMMA'1 or @I MMA 2
communication technique only, see section 4.8). Note that in mode NONE a LAG has to be
defined so that the input file is opened initially.

— SH+1 : optional sequence index for the field (I MMA1 orQIMMA2 communication
technique only, see section 4.8).

e Field third line

— P : source grid first dimension characteristic (‘P’: periodical; ‘R’: regional).

2 : source grid first dimension number of overlapping grid points.

P : target grid first dimension characteristic (‘P’: periodical; ‘R’: regional).

0 : target grid first dimension number of overlapping grid points.

The fourth line gives the list of transformations to be performed for this field. There is then one or more
additional configuring lines describing some parameters for each transformation. These additional lines
are described in more details in the section 6.

5.3.2 Second section of namcouple for | GNORED , | GNOJT |, and QJIPUT fields

The first 2 lines for fields with status | GNORD or | GNOJT or QJTPUT are as follows:
N SOENHL 37 86400 1 flda3.nc 1GNOJT
at no toce LAG+7200 SEHF+1
entries are as for EAFORIED fields, except that there is no output file name on the first line.
For QJIPUJT fields, there is no target model and therefore no target symbolic name; the source symbolic

name must be repeated twice on the field first line. Also, there is no coupling restart file name (f| da3. nc
here), no LAG index and no SKQ index.

For | QNORED fields, the name used in the coupling restart file (if any) must be the target symbolic name.

The third line is LOCTRANS if this transformation is chosen for the field. Note that LGCTRANS is the
only transformation supported for | NIRED , |GNAJT and QJIPUT fields (as it is performed directly in
the PSMILe below the prism _put _proto call). If LGACTRANS is chosen, a fourth line giving the name
of the time transformation is required. For more detail on LGCTRANS | see section 6.2.

CHAPTER 5. THE OASIS3 CONFIGURATION FILE NAMCOUPLE

5.3.3 Second section of namcouple for | NFUT fields

The first and only line for fields with status | NPUT is:
SOABEO SN BHDO 17 86400 0 SOABHXQNC [NPUT

e SONPHID : symbolic name for the field in the target model (HARACTER'8 repeated twice)
17: index in auxiliary file cf_name_table.txt (see above for EXPORTED fields)
86400: input period in seconds

0: number of transformations (always O for | NFUT fields)

SONBHXO N GARACTER' 32 giving the input file name (for more detail on its format, see
section 7.4)

o | NPUTl : field status.

Chapter 6

Thetransformations and interpolationsin
OASIS3

Different transformations and 2D interpolations are available in OASIS3 to adapt the coupling fields from
a source model grid to a target model grid. They are divided into five general classes that have precedence
one over the other in the following order: time transformation (with QI MM 1- MA 2 and PSMILe
only), pre-processing, interpolation, “cooking”, and post-processing. This order of precedence is concep-
tually logical, but is also constrained by the OASIS3 software internal structure.

In the following paragraphs, it is first described how to use OASIS3 in an interpolator-only mode. Then a
description of each transformation with its corresponding configuring lines is given.

6.1 Using OASIS3 in the interpolator-only mode

OASIS3 can be used in an interpolator-only mode, in which case it transforms fields without running any
model. It is recommended to use first OASIS3 in this mode to test different transformations and interpola-
tions without having to run the whole coupled system. In the interpolator-only mode, all transformations,
except the time transformations, are available.

To run OASIS3 in an interpolator-only mode, the user has to prepare the namcouple as indicated in sections
5.2 and 5.3. In particular, NONE has to be chosen below the keyword $GHANNEL ; “0” (without any model
name and Fortran unit number) must be given below the keyword $N\NBMIH. ; $RINTI ME has to be the
number of time occurrences of the field to interpolate from the NetCDF input file'; finally, the “coupling”
period of the field (4th entry on the field first line) must be always “1”. Note that if $RINITME s
smaller than the total number of time ocurrences in the input file, the first $BRINIT ME occurrences will be
interpolated.

The name of the input file which contains the fields to interpolate is given by the 6th entry on the field first
line (see 5.3). After their transformation, OASIS3 writes them to their output file which name is the 7th
entry on the first line. Note that all fields have to be present in the same restart file.

The time variable in the input file, if any, is recognized by the its attribute “units”. The acceptable units
for time are listed in the udunits.dat file (3). This follows the CF convention.

To compile OASIS3 in interpolator-only mode, see section 8.1.1. Practical examples on how to use OA-
SIS3 in a interpolator-only mode are given in prismutil/runn ing toyno del/ testint erp
(see also section 8.3.1) and prismiutil/runn ing/t oynodel/t estNONE (see also section 8.3.2)

The configuring parameters that have to be defined in the namcouple for each transformation in the
interpolator-only mode or in the coupling mode are described here after.

"For binary input file, only one time occurence may be interpolated

29

CHAPTER 6. THE TRANSFORMATIONS AND INTERPOLATIONS IN OASIS3

6.2

The time transformations

LGCTRANS can be chosen as first transformation if CLIM/MPI1-MPI2 communication and the PSMILe
interface are used. LOCTRANS requires one configuring line on which a time transformation, automati-
cally performed below the call to PSMILe pri sm put proto , should be indicated:

6.3

I NSTANI : no time transformation, the instantaneous field is transferred;
ACOMLL : the field accumulated over the previous coupling period is transferred;
AERNE : the field averaged over the previous coupling period is transferred;

T_MN: the minimum value of the field for each source grid point over the previous coupling period
is transferred;

T_MAX : the maximum value of the field for each source grid point over the previous coupling period
is transferred;

ONCE: only one prism _put proto orprism get proto will be performed; this is equivalent
to giving the length of the run as coupling or I/O period.

The pre-processing transformations

The following transformations are available in the pre-processing part of OASIS3, controlled by pr epr oc. f

REDGLO

This transformation is obsolete in the current OASIS version as interpolations for Gaussian Reduced
grid now exist; this transformation should not be used anymore.

REDA.O (routine redgl 0.f) performs the interpolation from a Reduced grid to a Gaussian one.
The interpolation is linear and performed latitude circle per latitude circle. When present, REDGLO
must be the first pre-processing transformation performed. The configuring line is as follows:

REDA.O operation
SNNBRLAT S

where xxx is half the number of latitude circles of the Gaussian grid. For example, for a T42
with 64 latitude circles, NN\BRLAT is “NO32”. In the current version, it can be either NO16,
NO24, NO32, NO48, NO80, NO160.$MXK is a flag indicating if non-masked values have to
be extended to masked areas before interpolation (MK = SEALAND) using the Reduced grid
mask (see section 7.2) or if the opposite has to be performed (MK = LANDEEA). If $AMK
= NEXTRAP , then no extrapolation is performed.
INVERT:
This transformation is obsolete in the current OASIS version and should be used anymore.

INERT (routine i nvert.f) reorders a field so that it goes from south to north and from west to
east (the first point will be the southern and western most one; then it goes parallel by parallel going
from south to north). Note that | N\VERT does not transform the associated grid or mask. | NVERT
should be used only for fields associated to A, B, G, L, Z, or Y grids (see annexe A) but produced
by the source model from North to South and/or from East to West. | NVERT does not work for
Reduced (’D’) or unstructured ("U’) grids (see annexe A).

The generic input line is as follows:

INVERT operation
$ARAT $ARN

$ARAT = NRID or SINR and $CRON = ESIVBT or VBBIEST describes the orien-
tation of the source field in longitude and latitude, respectively.

MASK:

6.3. THE PRE-PROCESSING TRANSFORMATIONS

MK (routine nasq.f) is used before the analysis EXTRAP . A given REAL value VALMMK s
assigned to all masked points following the source grid mask (see section 7.2), so they can be
detected by EXTRAP .

The generic input line is as follows:

MK operation
SVALMAK

approaches the maximum value that your computing platform can represent; choose a value well
outside the range of your field values but not too large.

o EXTRAP:

EXTRAP (routine extrap.f) performs the extrapolation of a field over its masked points. The
analysis MM must be used just before, so that EXTRAP can identify masked points. Note that
EXTRAP does not work for Reduced (’D’) or unstructured ("U”) grids (see appendix A).

Two methods of extrapolation are available. With N NEN\N , a N-nearest-neighbour method is used.
The procedure is iterative and the set of remaining masked points evolves at each iteration. The
configuring line is:

EXTRAP operation for S$OMETH = NNEWN

SOMETH $\W $NO $ND

SOMETH = NNBW ; SNV is the minimum number of neighbours required to perform the extrap-
olation (with a maximum of 4)2; $N O is the flag that indicates if the weight-address-and-iteration-
number dataset will be calculated and written by OASIS3 (3N O = 1), or only read (3N O = 0) in
file nweights (see section 7.5); $N D is the identificator for the weight-address-iteration-number
dataset in all the different EXTRAY N NENN datasets in the present coupling.?
With $QMETH = VB G , an N-weighted-neighbour extrapolation is performed. In that case, the
user has to build the grid-mapping file, giving for each target grid point the weights and addresses
of the source grid points used in the extrapolation; the structure of this file has to follow the OASIS3
generic structure for transformation auxiliary data files (see section 7.5).

The configuring line is:

EXIRAP operation for $QMETH = VAGT

$OMETH WV S$HLE $NMU $ND
$OMETH = VA G ; $\V is the maximum number of neighbours required by the extrapolation
operation; $CH LE and $NUMLU are the grid-mapping file name and associated logical unit; $N D
is the identificator for the relevant grid-mapping dataset in all different EXTRAY VB G transfor-
mations in the present coupling.
e CHECKIN:

GHEX N (routine chkfld.f) calculates the mean and extremum values of the source field and

prints them to the coupler log file cplout.

The generic input line is as follows:

GHEHXN operation
SN NI

SN NI' =1 or 0, depending on whether or not the source field integral is also calculated and printed.
e CORRECT:

QRECT (routine correct.f) reads external fields from binary files and uses them to modify

the coupling field. This transformation can be used, for example, to perform flux correction on the
field.

2For some grids, the extrapolation may not converge if $\V is too large.
3An EXTRAP N NBNN analysis is automatically performed within GCQRED analysis but the corresponding datasets have to
be distinct; this is automatically checked by OASIS3 at the beginning of the run.

CHAPTER 6. THE TRANSFORMATIONS AND INTERPOLATIONS IN OASIS3

This transformation requires at least one configuration line with two parameters:
QRECT operation
SMLT $\BHHEDB
SXMULT is the multiplicative coefficient of the current field, and $\NBH B.DS the number of addi-
tional fields to be combined with the current field. For each additional field, an additional configur-
ing line is required:
nbfields lines
$ACC $AMLT SCHLE $NMU
$ACC and SAMULT ,$CHLE and SNLMLU are respectively the symbolic name, the multiplicative
coefficient, the file name and the associated logical unit on which the additional field is going to be
read. The structure of the file has to follow the structure of OASIS3 binary coupling restart files
(see section 7.3).

6.4 The interpolation

The following interpolations, controlled by i nterp.f , are available in OASIS3.

e BLASOLD:

BASQOD (routine bl asol d.f) performs a linear combination of the current coupling field with
other coupling fields or with a constant before the interpolation per se.
This transformation requires at least one configuring line with two parameters:
BAQD operation

SXMULT $NBH BL.CB
SXMULT is the multiplicative coefficient of the current field, and $\NBH B.DS the number of addi-
tional fields to be combined with the current field. For each additional field, an additional input line
is required:
nbfields lines

SONAMME SAMULT
where 3ONME and $AMULT are the symbolic name and the multiplicative coefficient for the ad-
ditional field. To add a constant value to the original field, put XMLT =1, NBHHDS =1,
SONAMVE = QGONSTANT |, $AMUT = value to add.

e SCRIPR:

SR PR gathers the interpolation techniques offered by Los Alamos National Laboratory SCRIP
1.4 library*(1). SR PR routines are in prisnisrc/lit/ scr ip. See the SCRIP 1.4 documen-
tation in pri smsrc/ nod/ oasi s3/ doc/ SCR PFus er s. pdf for more details on the interpo-
lation algorithms. Linking with NetCDF library is mandatory when using SR PR interpolations.

The following types of interpolations are available:

— DSIV&E performs a distance weighted nearest-neighbour interpolation (N neighbours). All
grid types are supported.
Masked target grid points: no values are calculated for masked target grid points.
Non-masked target grid points: if the N nearest neighbours of a non-masked target grid point
are masked, no value is calculated for that target point (note that transformations MAK and
EXTRAP can be used to avoid this situation); the value 1.0E+20 is assigned to that non-masked
target grid point if prisnmisrc/lib/s crip/src/scriprnp.f orvector. 0 (for
vector interpolation) are compiled with || _wei ghtot =. true.

The configuring line is:

“See the copyright statement in appendix C.2.

6.4. THE INTERPOLATION

SR PR OSGE
SOMETH $CRS $CTYP $REST $NBIN S\ $ASSOW $PROICART
« SOMETH = O SIVE
x $AFS is the source grid type (LR, D or U)- see annexe A.
x $CFTYP is the field type: SCALAR if the field is a scalar one, or VECTAR 1 or VECTAR _J
whether the field represents respectively the first or the second component of a vector field

(see paragraph Support of vector fields below). Note that VECTOR , which is fact leads
to a scalar treatment of the field (as in the previous versions), is still supported.

« SREST is the search restriction type: LATLON or LATI TLLE (see SCRIP 1.4 documen-
tation). Note that for D or U grid, the restriction may influence sligthly the result near the
borders of the restriction bins.

+ $NBIN the number of restriction bins (see SCRIP 1.4 documentation).

* SNV is the number of neighbours used.
*x $ASSOWP : optional, for VECTAR | or VECTAR _J vector fields only; the source symbolic
name of the associated vector component.

x $PRJCART : optional, for vector fields only; should be PRICART if the user wants the
vector components to be projected in a Cartesian coordinate system before interpolation
(see paragraph Support of vector fields below).

— GAB/A performs a N nearest-neighbour interpolation weighted by their distance and a
gaussian function. All grid types are supported.
Masked target grid points: no values are calculated for masked target grid points.
Non-masked target grid points: if the N nearest neighbours of a non-masked target grid point
are masked, no value is calculated for that target point, except that if prismsrc/lib/
scrip/ src/ renap gauswgt.f is compiled with || nnei=true. ,in which case the
non-masked nearest neighbour is used. As for O SIV&E , the value 1.0E+20 is assigned to
non-masked target grid points for which no value is calculated if pri smisrc/ i b/ scrip/
src/scriprnp. f or vector.F90 (for vector interpolation) are compiled with
Il _weightot=true.
The configuring line is:
SR PR GAB/GET
$SQMETH $G3S $GFTYP $REST $NBIN SV $VAR $ASSOWP SPROJCART
* $OMETH = GAB/GET
*x $VAR , which must be given as a REAL value (e.g 2.0 and not 2), defines the weight given
to a neighbour source grid point as inversely proportional to exp(—1/2 - d?/o?) where
d is the distance between the source and target grid points, and 02 = $V AR - d° where

4’ is the average distance between two source grid points (calculated automatically by
OASIS3).

— BLINEAR performs bilinear interpolation.
— BABC performs a bicubic interpolation.

For BLINEAR and BB C , Logically-Rectangular (LR) and Reduced (D) source grid
types are supported.

Masked target grid points: no values are calculated for masked target grid points.

Non-masked target grid points: if the some of the source grid points normally used in the
bilinear or bicubic interpolation are masked, another algorithm is applied; at least, the nearest
non-masked source neighbour is used.

The configuring line is:

SRAIRBLINNA Ro SRPRBABC

CHAPTER 6. THE TRANSFORMATIONS AND INTERPOLATIONS IN OASIS3

SOMETH $C3FS $CGTYP SREST $NBN $ASSOW $PROICART
* $3OMETH = BLNeAR orBABC
*x $AFS is the source grid type (LR or D)
x SAFTYP ,$NBN , $ASSOWP $PRIICART are as for O STVET

x SREST is as for O SIVET , except that only LAT TULE is possible for a Reduced (D)
source grid.

— QONER/ performs 1st or 2nd order conservative remapping, which means that the weight
of a source cell is proportional to area intersected by target cell. Note that the SCRIP library
supposes that the borders of the cells are linear in the longitude-latitude space between the
corners defined by the users or calculated automatically by OASIS3 (see $33S). In this
space the border of a cell has to be coincident with the border of its neighbour cell to give
proper results.

The target grid mask is never considered in GONSERV , except with normalisation option
FRAON\H (see below). To have a value calculated, a target grid cell must intersect at
least one source cell. However, the NORMlisation option (that takes into account the source
grid mask, see below) may result in a null value calculated for those target grid cells. In
that case (i.e. at least one intersecting source cell, but a null value finally calculated be-
cause of the normalisation option), the value 1.0E+20 is assigned to those target grid points
if prismisrc/lib/s crip/ src/scri prmp. f orvector. B0 (for vector interpola-
tion) are compiled with || wei ghtot=true

The configuring line is:

SR PR QONERV
$SQMETH $C3FS $GFTYP $REST $NBIN $NORM SORCER $ASSOWP SPROICART

« SOVETH = CONSERY

* $A3FS s the source grid type: LR, D and U are supported for 1st-order remapping if the
grid corners are given by the user in the grid data file which is, in this case, necessarily
a netCDF file (grids.nc, see section 7.2); only LR is supported if the grid corners are
not available in the grid data file and therefore have to be calculated automatically by
OASIS3. For second-order remapping, only LR is supported because the gradient of the
coupling field used in the transformation has to be calculated automatically by OASIS3.

* $GTYP, $REST ,$N\BIN , $ASSOWP ,and SPRIICART are as for O STVE . Note that
for NS the restriction does not influence the result.
* $NRM is the NORMlization option:

- FRACAREA : The sum of the non-masked source cell intersected areas is used to
NORMlise each target cell field value: the flux is not locally conserved, but the flux
value itself is reasonable.

- CESTAREA : The total target cell area is used to NORM lise each target cell field value
even if it only partly intersects non-masked source grid cells: local flux conservation
is ensured, but unreasonable flux values may result.

- FRAONNE @ as FRACAREA | except that at least the source nearest unmasked neigh-
bour is used for unmasked target cells that intersect only masked source cells. Note
that no value will be calculated for a target cell not intersecting any source cells
(masked or unmasked), even with FRACNNEI option.

* SOROER : ARST or SEAOND ° for first or second order remapping respectively (see
SCRIP 1.4 documentation).

Support of vector fields

SAONSERY SHOOD has not been tested in detail.

6.4. THE INTERPOLATION

SR R supports 2D vector interpolation. Please note however that this functionality is relatively
new and has been tested and validated only in a reduced number of test cases. The two vector
components have to be identified by replacing $GFTYP by VBECTAR | or VECTCR .J and have to
be associated by replacing $ASSOMP , for each component field, by the source symbolic name of
the associated vector component in (see above). The grids of the two vector components can be
different but have to have the same number of points, the same overlap, the same mask; the same in-
terpolation must be used for the two components. A proper example of vector interpolation is given
in the interpolator-only mode example (see details in pri smutil/runni ng/t esti nterp/
README testinterp). The details of the vector treatment, performed by the routines

scriprnp _vector.F0 and rotations. F30 in prismsrc/lib/sc ri p/ src are the
following:

— If the angles of the source grid local coordinate system are defined in the grids.nc data file
(see section 7.2), an automatic rotation from the local to the geographic spherical coordinate
system is performed.

— If the two source vector components are not defined on the same source grid, one component
is automatically interpolated on the grid of the other component.

— If the user put the PROJCART keyword at the end of the SR PR configuring line (see above),
projection of the two vector components in a Cartesian coordinate system, interpolation of
the resulting 3 Cartesian components, and projection back in the spherical coordinate system
are performed. In debug mode (compilation with - CHBUG pre-compiling key), the resulting
vertical component in the spherical coordinate system after interpolation is written to a file
proj ecti on. nc ; as the source vector is horizontal, this component should be very close to
0.

— If the user did not put the PRICART keyword at the end of the S(R PR configuring line, the
two spherical coordinate system components are interpolated.

— If the angles of the target grid local coordinate system are defined in the grids.nc data file
(see section 7.2), an automatic rotation from the geographic spherical to the local coordinate
system is performed.

— The first and second components of the interpolated vector field are then present in the target
fields associated respectively to the first and second source vector component. The target grids
for the two vector components can be different.

Known problems with SCRIPR

When the SCRIP library performs a remapping, it first checks if the file containing the corres-
ponding remapping weights and addresses exists. If it exists, it reads them from the file; if not,
it calculates them and store them in a file. The file is created in the working directory and is
called rnp _srcg_to _tgtg XXXXXXX_NORMAOPT. nc , where srcg and tgtg are the acronyms of
respetively the source and the target grids, XXXXXXX is the interpolation type (i.e. O SIVGE
AB/MET ,BLINA ,BABC ,or ONFR/)and NORMAOPT is the normalization option (i.e.
CESTAREA or FRACAREA for CNSERVY only). The problem comes from the fact that the weights
and addresses will also differ whether or not the MM and EXTRAP transformations are first acti-
vated during the pre-processing phase (see section 6.3) and this option is not stored in the remap-
ping file name. Therefore, the remapping file used will be the one created for the first field having
the same source grid, target grid, and interpolation type (and the same normalization option for
ANERY), even if the MMK and EXTRAP transformations are used or not for that field. This in-
consistency is however usually not a problem as the MAK and EXTRAP transformations are usually
used for all fields having the same source grid, target grid, and interpolation type, or not at all.

e INTERP:

CHAPTER 6. THE TRANSFORMATIONS AND INTERPOLATIONS IN OASIS3

INTERP gathers different techniques of interpolation controlled by routine fiasco.f . The fol-
lowing interpolations are available:

— BLINEAR performs a bilinear interpolation using 4 neighbours.

- B QB C performs a bicubic interpolation.

— N\HBR performs a nearest-neighbour interpolation.

These three interpolations are performed by routines in /prismisrc/|ib/ fsci nt and
support only A, B, G, L, Y, or Z grids (see appendix A). All sources grid points, masked or
not, are used in the calculation. To avoid the ‘contamination’ by masked source grid points,
transformations MAK and EXTRAP should be used. Values are calculated for all target grid
points, masked or not.
The configuring line is as follows:
BLUNAR o BQABC o NHBR interpolation

$SQETH $C3FS $CFTYP

* $QMETH = BLNAR ,BABC or N\HBR

x $AFS is the source grid type (A, B, G, L, Y, or Z, see appendix A)

*x SAFTYP the field type (SCALAR or VECTAR). VECTGR has an effect for target grid
points located near the pole: the sign of a source value located on the other side of the
pole will be reversed.

— S RMESH (routines in /prismisrc/lib/ anai s m is a first-order conservative remap-
ping from a fine to a coarse grid (the source grid must be finer over the whole domain) and sup-
ports only Lat-Lon grids (see appendix A). For a target grid cell, all the underlying not masked
source grid cells are found and the target grid field value is the sum of the source grid field val-
ues weighted by the overlapped surfaces. No value is assigned to masked cells. Note that it is
not recommended to use this interpolation anymore, as the more general S(R PR CONSERV
remapping is now available. The configuring line is as follows:

SURAMESH renappi ng
$QMETH $CFS $GFTYP $ND $\W $NO

* $OMETH = SURAMEH

* $AFS and $AFTYP are as for B LI NEAR

x BN D is the identificator for the weight-address dataset in all the different | NTERR SURAMESH
datasets in the present coupling. This dataset will be calculated by OASIS3 if SNO =1,
or only read if $N O = 0.

* BNV is the maximum number of source grid meshes used in the remapping.

— GABS AN (routinesin/prismisrc/lib/ ana i s g)is a gaussian weighted nearest-neighbour
interpolation technique. The user can choose the variance of the function and the number of
neighbours considered. The masked source grid points are not used and no value are calculated
for masked target grid points.

The configuring line is:
GABI AN interpolation
$SQMETH $CFS $GFTYP $ND W SR INO
« SOMETH = GBI AN
x $AFS is the source grid type (LR Dor U) and $CFTYP is as for the O STVGET
x SN D is the identificator for the weight-address dataset in all the different | NTERY GBS AN
datasets in the present coupling. This weight-address dataset will be calculated by OA-
SIS3if $N O =1, or only read if $N O = 0.
* BNV is the number of neighbours used in the interpolation.
* VAR is as for SR PR GALB/GT (see above).

6.4. THE INTERPOLATION

e MOZAIC:

MXYA C performs the mapping of a field from a source to a target grid. The grid-mapping dataset,
i.e. the weights and addresses of the source grid points used to calculate the value of each target
grid point are defined by the user in a file (see section 7.5). The configuring line is:

MXYAC operation
$HLE $NMU 3$ND SNV

— $ALE and $NMU are the grid-mapping file name and associated logical unit on which
the grid-mapping dataset is going to be read),

— $N D the identificator for this grid-mapping dataset in all M¥A C grid-mapping datasets in
the present coupling

— 3NV is the maximum number of target grid points use in the mapping.

e NOINTERP:

NO NTERP is the analysis that has to be chosen when no other transformation from the interpolation
class is chosen. There is no configuring line.

e FILLING:

HLUNG (routine / pri smsrc/ nod/ oas is3/ srcl/fil Ii ng.f)performs the blending of
a regional data set with a climatological global one for a Sea Surface Temperature (SST) or a Sea
Ice Extent field. This occurs when coupling a non-global ocean model with a global atmospheric
model. A LLING can only handle fields on Logically Rectangular grid (LR, but also A, B, G, L, Y,
and Z grids, see section A.

The global data set has to be a set of SST given in Celsius degrees (for the filling of a Sea Ice Extent
field, the presence or absence of ice is deduced from the value of the SST). The frequency of the
global set can be interannual monthly, climatological monthly or yearly.

The blending can be smooth or abrupt. If the blending is abrupt, only model values are used within
the model domain, and only the global data set values are used outside. If the blending is smooth, a
linear interpolation is performed between the two fields within the model domain over narrow bands
along the boundaries. The linear interpolation can also be performed giving a different weight to
the regional or and global fields.

The smoothing is defined by parameters in / pri sn sr ¢/ nod/ oasi s3/ src/ nod snoot h. F0
The lower smoothing band in the global model second dimension is defined by nsltb (outermost
point) and nslte (innermost point); the upper smoothing band in the global model second dimension
is defined by nnltb (outermost point) and nnlte (innermost point). The parameter qalfa controls the
weights given to the regional and to the global fields in the linear interpolation. galfa has to be
1/(nslte — nsltb) or 1/(nnltb — nnlte). For the outermost points (nsltb or nnltb) in the smoothing
band, the weight given to the regional and global fields will respectively be 0 and 1; for the inner-
most points (nslte or nnlte) in the smoothing band, the weight given to the regional and global fields
will respectively be 1 and 0; within the smoothing band, the weights will be a linear interpolation
of the outermost and innermost weights.

The smoothing band in the global model first dimension will be a band of nliss points following the
coastline. To calculate this band, OASIS3 needs nwlgmx, the greater first dimension index of the
lower coastline and nelgmx, the smaller first dimension index on the upper coastline. The parameter
gbeta controls the weights given to the regional and to the global fields in the linear interpolation.
gbeta has to be 1/(nliss — 1). The weights given to the regional and global fields in the global
model first dimension smoothing bands will be calculated as for the second dimension.

The user must provide the climatological data file with a specific format described in 7.5. When one
uses A LLING for SST with smooth blending, thermodynamics consistency requires to modify the
heat fluxes over the blending regions. The correction term is proportional to the difference between
the blended SST and the original SST interpolated on the atmospheric grid and can be written out

CHAPTER 6. THE TRANSFORMATIONS AND INTERPOLATIONS IN OASIS3

on a file to be read later, for analysis CORRECT for example. In that case, the symbolic name of
the flux correction term read through the input file namcouple must correspond in H LLING and
QRECT analyses.

In case the regional ocean model includes a coastal part or islands, a sea-land mask mismatch may
occur and a coastal point correction can be performed if the field has been previously interpolated
with INTER SLIRFMESH . In fact, the mismatch could result in the atmosphere undesirably “seeing”
climatological SST’s directly adjacent to ocean model SST’s. Where this situation arises, the coastal
correction consists in identifying the suitable ocean model grid points that can be used to extrapolate
the field, excluding climatological grid points.

This analysis requires one configuring line with 3, 4 or 6 arguments.

1. If FILLING performs the blending of a regional data set with a global one for the Sea Ice
Extent, the 3-argument input line is:
Sea lce Extent HLLINSG operation
$CHLE $NMU $OWETH
the file name for the global data set, $NUMLU the associated logical unit. $QMETH , the
HLLING technique, is a GPARACTER'8 variable: the first 3 characters are either SMD,
smooth filling, or RAW, no smoothing ; the next three characters must be 9 E for a Sea Ice
Extent filling operation; the last two define the time characteristics of the global data file, re-
spectively MD, SE and AN for interannual monthly, climatological monthly and yearly. Note
that in all cases, the global data file has to be a Sea Surface Temperature field in Celsius
degrees.
2. If FILLING performs the blending of a regional data set with a global one for the Sea Surface
Temperature without any smoothing, the 4-argument input line is:
#Sa Surface Tenperature HLLING operation wthout snoothing
$SCHLE $NMU $OQMETH $NFCGOAST
SAHLE , $NLMU are as for the SIE filling. In this case however, $OMETH 1: 3) = RAW,
$AMETH 4: 6) = SST, and the last two characters define the time characteristics of the
global data file, as for the SIE filling. $NFGOAST is the flag for the calculation of the coastal
correction (0 no, 1 yes).
3. If FILLING performs the blending of a regional data set with a global one for the Sea Surface
Temperature with smoothing, the 6-argument input line is:
#Sa Surface Tenperature HLLING operation wth snoothing
$SCHLE $NMU $OQMETH $NFCGOAST SONMME SNINT
where $H LE , $NMU and $NFGOAST are as for the SST filling without smoothing. In this
case, SOMETH 1: 3) = WD, $QMETH 4: 6) = SST, and the last two characters define
the time characteristics of the global data file, as for the SIE filling. $ONMME is the symbolic
name for the correction term that is calculated by OASIS3 and $NIN T the logical unit on
which it is going to be written.

6.5 The “cooking” stage

The following analyses are available in the “cooking” part of OASIS3, controlled by cookart . f

e CONSERV:

GONSERVY (routine /prismisrc/nod /oasi s3/src/co nser v. f)performs global flux con-
servation. The flux is integrated on both source and target grids, without considering values of
masked points, and the residual (target - source) is calculated. Then all flux values on the target grid
are uniformly modified, according to their corresponding surface. This analysis requires one input
line with one argument:

6.5. THE “COOKING” STAGE

QONERY operation
$OMETH

version, only global flux conservation can be performed. Therefore $OMETH must be GBAL .
e SUBGRID:

S BER D can be used to interpolate a field from a coarse grid to a finer target grid (the target
grid must be finer over the whole domain). Two types of subgrid interpolation can be performed,
depending on the type of the field.

For solar type of flux field ($S.BTYFE = SAAR), the operation performed is:

_1—047;

0¥ F

C1l-a
where ®; (F') is the flux on the fine (coarse) grid, a; (o) an auxiliary field on the fine (coarse) grid
(e.g. the albedo). The whole operation is interpolated from the coarse grid with a grid-mapping
type of interpolation; the dataset of weights and addresses has to be given by the user.

For non-solar type of field (JSUBTYPE = NONSQAR), a first-order Taylor expansion of the field
on the fine grid relatively to a state variable is performed (for instance, an expansion of the total

heat flux relatively to the SST):

OF
@i_F+8—T(Ti—T)

where ®; (F') is the heat flux on the fine (coarse) grid, T; (1) an auxiliary field on the fine (coarse)
grid (e.g. the SST) and g—g the derivative of the flux versus the auxiliary field on the coarse grid.
This operation is interpolated from the coarse grid with a grid-mapping type of interpolation; the

dataset of weights and addresses has to be given by the user.

This analysis requires one input line with 7 or 8 arguments depending on the type of subgrid inter-
polation.

1. If the the S BAR D operation is performed on a solar flux, the 7-argument input line is:

SBAHRD operation wth $IBIYPEIAAR
$CH LE SNMLU SND S\ $SBIYFE SAAORE SHNE

$CAHLE and $NLMU are the subgrid-mapping file name and associated logical unit (see sec-
tion 7.5 for the structure of this file); $N D the identificator for this subgrid-mapping dataset
within the file build by OASIS based on all the different S B3I D analyses in the present
coupling; $\V is the maximum number of target grid points use in the subgrid-mapping;
$IBIYFE = SAAR is the type of subgrid interpolation; $33OARE is the auxiliary field
name on the coarse grid (corresponding to «) and $CH NE is the auxiliary field name on fine
grid (corresponding to ;). These two fields needs to be exchanged between their original
model and OASIS3 main process, at least as AX LARY fields. This analysis is performed
from the coarse grid with a grid-mapping type of interpolation based on the $CH LE file.

2. If the the SUBGRID operation is performed on a nonsolar flux, the 8-argument input line is:

SBRD operation wth $SBIYENNO LAR
SCHLE $NMU $ND S\ $SBIYFE $CORE SEHN $@pPr

SNV are as for a solar subgrid interpolation; $SBTYFE = NONSOAR ; $CCOARE is the
auxiliary field name on the coarse grid (corresponding to 7") and $CH NE is the auxiliary field
name on fine grid (corresponding to 7T5); the additional argument $(DPT is the coupling ratio
on the coarse grid (corresponding to g—g) These three fields need to be exchanged between their
original model and OASIS3 main process as AMX LARY fields. This operation is performed
from the coarse grid with a grid-mapping type of interpolation based on the $CH LE file.

CHAPTER 6. THE TRANSFORMATIONS AND INTERPOLATIONS IN OASIS3

e BLASNEW:

BLASNEW (routine / pri snisrc/ nod/ oas is3/ src/ blasnew.f) performs a linear combi-
nation of the current coupling field with any other fields after the interpolation. These can be other
coupling fields or constant fields.

This analysis requires the same input line as BASAD .
o MASKEP:

A new analysis MMKP can be used to mask the fields after interpolation. MMKP has the same
generic input line as MAXK .

6.6 The post-processing

The following analyses are available in the post-processing part of OASIS3, controlled by / pri s sr ¢/
nod/ oasi s3/ src/ post pro. f.

o REVERSE:
This transformation is obsolete in the current OASIS version.
REVERE (routine / pri smisrc/ nod/ oas is3/ srcl/ rever se.f)reorders a field.

This analysis requires the same input line as | NVERT , with 3R ON and $CIRAT being now
the resulting orientation. REVERE does not work for U and D grids (see appendix A). Note that
INVERT does not transform the associated grid or mask.

e CHECKOUT:

GEXQAJ (routine /prismsrc/nod /oasis3/src/chkfld.f) calculates the mean and
extremum values of an output field and prints them to the coupler output cplout.
The generic input line is as for GEII N (see above).

e GLORED
This transformation is obsolete in the current OASIS version as coupling fields can be directly
interpolated to a target Reduced grid, if needed; this transformation should not be used anymore.
A OED performs a linear interpolation of field from a full Gaussian grid to a Reduced grid. When
present, GARED must be the last analysis performed.
Before doing the interpolation, non-masked values are automatically extrapolated to masked points
with EXTRAF N NENN method (see above); to do so, the masked grid points are first replaced with
a predefined value. The required global grid mask must be present in data file n@sks or nasks. nc
(see section 7.2).
The generic input line is as follows:
QD operation

SNNBRLAT S\ $NO $ND

is as for D3O (see RADA.O description above). The next 3 parameters refer to the EXTRAR N NENN
extrapolation (see EXTRAR N NENN description above). The value assigned to all land points be-
fore interpolation is given by anskred in/pri snisrc/ nod/ o asis3/ src/blkdata.f ;as
for the SVALMASK in MK analysis, it has to be chosen well outside the range of your field values
but not too large to avoid any representation problem.

Chapter 7

OASI S3 auxiliary datafi les

OASIS3 needs auxiliary data files describing coupling and I/O field names and units, defining the grids
of the models being coupled, containing the field coupling restart values or input data values, as well as a
number of other auxiliary data files used in specific transformations.

7.1 Field names and units

The text file cf nane table.txt , that can be found in directory prismiutil/runn ing
/toycl i mi nput directory, contains a list of CF standard names and associated units identified with
an index. The appropriate index has to be given by the user for each coupling or I/O field as the third entry
on the field first line (see 5.3). This information will be used by OASIS3 for its log messages to cplout file
and by the PSMILe to produce CF compliant NetCDF files.

7.2 Grid data files

The grids of the models being coupled must be given by the user, or directly by the model through
PSMILe specific calls (see section 4.2) in grid data files. These files can be all binary or all NetCDF. In
/ pri smidat a/ t oy clim/i nput toyclim standard standard prism 2-2.tar.gz , Net-
CDF examples can be found.

The arrays containing the grid information are dimensioned (nx, ny) , where nx and ny are the grid
first and second dimension, except for Unstructured (U) and Reduced (D) grid, for which the arrays are
dimensioned (nbr _pts,1) , where nbr _pts is the total number of grid points.

1. grids or grids.nc: contains the model grid longitudes, latitudes, and local angles (if any) in single
or double precision REAL arrays (depending on OASIS3 compilation options). The array names
must be composed of a prefix (4 characters), given by the user in the namcouple on the second
line of each field (see section 5.3), and of a suffix (4 characters); this suffix is “.lon” or “lat”
for respectively the grid point longitudes or latitudes (see /pri smisrc/ nod/ oasi s3/ src
/nod |abel .FO)

For SR PR interpolations, the grid data files must be NetCDF files. If the S0R PR GCONSERV

remapping is used, longitudes and latitudes for the source and target grid corners must also be
available in the grids.nc file as arrays dimensioned (nx, ny,4) or (nbr pts,1,4) where 4 is
the number of corners (in the counterclockwize sense). The names of the arrays must be composed
of the grid prefix and the suffix “.clo” or “.cla” for respectively the grid corner longitudes or lati-
tudes. As for the other grid information, the corners can be provided in grids.nc before the run by
the user or directly by the model through PSMILe specific calls (see section 4.2); furthermore, for
Logically Rectangular LR source grids only, the grid corners will be automatically calculated if they

41

CHAPTER 7. OASIS3 AUXILIARY DATA FILES

are not available in grids.nc (if needed, the corresponding reverse remapping can be done in which
the current target grid become the source grid).

Longitudes must be given in degrees East in the interval -360.0 to 720.0. Latitudes must be given in
degrees North in the interval -90.0 to 90.0. Note that if some grid points overlap, it is recommended
to define those points with the same number (e.g. 360.0 for both, not 450.0 for one and 90.0 for
the other) to ensure automatic detection of overlap by OASIS. Note also that cells larger than 180.0
degrees in longitude are not supported.

If vector fields are defined on a grid which has a local coordinate system not oriented in the usual
zonal and meridional directions, the local angle of the grid coordinate system must be given in
grids.nc file in an array which name must be composed of the grid prefix and the suffix “.ang”.
The angle is defined as the angle between the first component and the zonal direction (which is
also the angle between the second component and the meridional direction). In the grid file in
[prismidata/toy clim input toyclim standard standard prism 2-2.tar.gz ,
the angles of the torc grid are given in array torc.ang . If one of the SIR PR interpolations is
requested for a vector field, OASIS3 automatically performs the rotation from the local coordinate
system to the geographic spherical coordinate system for a source grid, or vice-versa for a target
grid.

File grids or grids.nc must be present with at least the grid point longitudes and latitudes for all
component model.

2. masks or masks.nc: contains the masks for all component model grids in | NTEER arrays (0 -not
masked- or 1 -masked- for each grid point). The array names must be composed of the grid prefix
and the suffix “.msk”. This file, masks or masks.nc, is mandatory.

3. areas or areas.nc: this file contains mesh surfaces for the component model grids in single or
double precision REAL arrays (depending on OASIS3 compilation options). The array names must
be composed of the grid prefix and the suffix “.srf”. The surfaces may be given in any units but
they must be all the same (in INTERFGMBI A N, it is assumed that the units are m? but they
are used for statistics calculations only.) This file areas or areas.nc is mandatory for GEHOAI N ,
GEXQAJ or ONERY , and used for statistic calculations in | NTEHRFGABI A N it is not
required otherwise.

4. maskr or maskr.nc: this file contains Reduced (D) grid mask in | NTEEER arrays dimensioned
array(nbr pts) wherenbr _pts isthe total number of the Reduced grid points (0 -not masked-
or 1 -masked- for each grid point). This file is required only for grids to which the REDA.O or
A.¥ED transformation is applied. As mentionned above, these transformations should not be used
anymore as interpolations are now available for Reduced grids directly. If used, the mask array
name must be “MSKRDxxx”” where “xxx” is half the number of latitude circles of the reduced grid
(032 for a T42 for example).

If the binary format is used, grids, masks, areas, and maskr must have the following structure. The array
name is first written to the file to locate a data set corresponding to a given grid. The data set is then
written sequentially after its name. Let us call “brick” the name and its associated data set. The order in
which the bricks are written doesn’t matter. All the bricks are written in the grid data file in the following
way:

VR TH LV array_nane
VR TH LU auxi | dat a

e LU is the associated unit,
e array _nane is the name of the array (CHARACTER*8),

e auxildata is the REAL or INTEGER array dimensioned (nX, ny) or (nbr pts,1) con-
taining the grid data.

7.3. COUPLING RESTART FILES

7.3 Coupling restart files

At the beginning of a coupled run, some coupling fields may have to be initially read from their cou-
pling restart file (see section 4.8). If needed, these files are also automatically updated by the last
prism put proto call of the run (see section 4.6.1) . To force the writing of the field in its coupling
restart file, one can use the routine prism put restart _proto (see section 4.6.3). Warning: the
date is not written or read to/from the restart file; therefore, the user has to make sure that the appropriate
restart file is present in the working directory.

The name of the coupling restart file is given by the 6th character string on the first configuring line for
each field in the namcouple (see section 5.3). Coupling fields coming from different models cannot be in
the same coupling restart files, but for each model, there can be an arbitrary number of fields written in
one coupling restart file. Note that in the NONE techniques, output files with the same format are also
created for writing the resulting field after transformation.

In the coupling restart files, the fields must be single or double precision REAL arrays (depending on
PSMILe and OASIS3 compilation options) and, as the grid data files, must be dimensioned (nx, ny) ,
where NX and ny are the grid first and second dimension, except for fields given on Unstructured ("U’)
and Reduced (’D) grid, for which the arrays are dimensioned (nbr _pts, 1) ,wherenbr pts is the total
number of grid points. The shape and orientation of each restart field (and of the corresponding coupling
fields exchanged during the simulation) must be coherent with the shape of its grid data arrays.

Both binary and NetCDF formats are supported; for NetCDF file the suffix .nc is not mandatory. If the
coupling restart file for the first field is in NetCDF format, OASIS3 will assume that all coupling restart
files (and output files for NINE communication techniques) are NetCDF!.

In the NetCDF restart files, the field arrays must have the source symbolic name indicated in the namcouple
(see section 5.3).

In binary restart file, each field is written in the following way:

VR TH LU array_nane
VR TH LV restartdata

e LU is the associated unit,
e array _nane is the source symbolic name of the field (CHARACTER¥*S),
e restartdata is the restart field REAL array dimensioned (nx, ny) or (nbr pts,1) 2

7.4 Input data files

Fields with status | NJUT in the namcouple will, at runtime, simply be read in from a NetCDF input file
by the target model PSMILe below the prism get proto call, at appropriate times corresponding to
the input period indicated by the user in the namcouple.

The name of the file must be the one given on the field first configuring line in the namcouple (see section
5.3.3). There must be one input file per | NPUT' field, containing a time sequence of the field in a single
or double precision REAL array (depending on PSMILe compilation options), named with the field sym-
bolic name in the namcouple and dimensioned (nx, ny, ti ne) or (nbr pts,1,ting) . The time
variable as to be an array tine(ting) expressed in “seconds since beginning of run”. The “time”

"Note that even if the grid auxiliary data files are in NetCDF format, the restart coupling files may be in binary format, or
vice-versa.

2If REDGLO is the first transformation applied on a Reduced grid field, the Reduced field must be given is an array
rest art dat a(nx*ny) where NX and ny are the global Gaussian grid dimensions and the Reduced field is completed by
trailing zeros.

CHAPTER 7. OASIS3 AUXILIARY DATA FILES

dimension has to be the unlimited dimension. For a practical example, see the file SOALBEDO.nc in
[prisnidat a/toy clim/i nput toyclim standard standard _prism 2-2.tar.gz

7.5 Transformation auxiliary data files

Many transformation need auxiliary data files, such as the grid-mapping files used for an interpolation.
Some of them are created automatically by OASIS3, others have to be generated by the user before starting
the coupled run.

7.5.1 Auxiliary data filesfor EXTRAPPNNENN EXTRAP VA G, | NTERPY SLIR-VEH
INFERRF GABS AN ,MXAC ,and SBRD

The auxiliary data files containing the weights and addresses used in these transformations have a similar
structure; their names are given in Table 7.1.

File name ‘ Description

nweights | weights, addresses and iteration number for EXTRAP/NINENN interpolation
any name | weights and addresses for EXTRAP/WEIGHT extrapolation

mweights | weights and addresses for INTERP/SURFMESH interpolation

gweights | weights and addresses for INTERP/GAUSSIAN interpolation

any name | weights and addresses for MOZAIC interpolation

any name | weights and addresses for SUBGRID interpolation

Table 7.1: Analysis auxiliary data files
The files nweights, mweights and gweights can be created by OASIS3 if their corresponding N O =1
(see EXTRAP N NE\N | NTHRP SLRAMEH . | NTHRP GALBS AN in sections 6.3 and 6.4).

The name of the (sub)grid-mapping files for MYAC EXIRAPVAGT and SBAR D analyses can
be chosen by the user and have to be indicated in the namcouple (see respectively sections 6.3 and 6.4 and
6.5). These files have to be generated by the user before starting the coupled run.

The structure of these files is as follows:

GHARCTER 8 cl adress, cl wei ght
INTEER iadress(jpnb, | po)
REAL veight(jpnb,jpo)

QN uni t =90, file= at 31t opa ", fornF unfornatt ed’)
VR TH cl vei ght , "(7’WH GHTS’ ,11)’) knunib
VR TH cl adr ess, "("ADRESE'’ ,11)’) knunb

VRTE (90) clweignt

VRTE (90) weight

VRTE (90) cladress

VRTE (90) iadress
where

e jpnb is the maximum number of neighbors used in the transformation (BNMA SN in the nam-
couple)

j po is the total dimension of the target grid

at3ltopa is the name of the grid-mapping data file ($CH LE in namcouple)
knunb is the identificator of the data set (BN D in namcouple)

e cladress is the locator of the address dataset

7.5. TRANSFORMATION AUXILIARY DATA FILES

e clweight is the locator of the weight dataset
e iadress (i,j) isthe address on the source grid of the ¢ neighbor used for the mapping of the
j€ target grid point. The address is the index of a grid point within the total number of grid points.
e weight(i,j) isthe weight affected to the i¢ neighbor used for the transformation of the j¢ target
grid point
For file nweights, there is an additional brick composed of a GHARACTER'8 variable (formed by the
characters | NJFEME and by the data set identificator) and of an INTEEER array(N which is the
iteration number within EXTRAR N NE\N at which the extrapolation of the n® grid point is effectively
performed.

7.5.2 Auxiliary data files for A LLI NG

For the FILLING analysis, the global data set used can be either interannual monthly, climatological
monthly or yearly (see 6.4). The name of the global data file can be chosen by the user and has to be
indicated in the namcouple have to be given to OASIS through the input file namcouple. In case of
monthly data, the file must be written in the following way:

RRAL fieldjanuary y ear _01(j pi, jpi)

VR TENUFil) fieldjanuary ye a 01
VRTENUTIl) field february y ear_ 01
VR THNLUTil) fiel d_narch year 01
etc...

VR THNLUfil) fiel d_decentoer_y ear_01

C
Cif clinatol ogy, one stops here
C
VR TENUFil) fieldjanuary ye a 02
etc...
where
e field ... isthe global dataset

e jpi andjp] are the dimensions of the grid on which FILLING is performed
e NU fil is the logical unit associated to the global data file and is defined in the input file nam-
couple

Note that the first month needs not to be a january. This is the only file within OASIS in which the fields
are not read using a locator.

7.5.3 Auxiliary data files for SIR PR

The NetCDF files containing the weights and addresses for the SR PR remappings (see section 6.4) are
automatically generated at runtime by OASIS3. Their structure is described in detail in section 2.2.3 of
the SCRIP documentation available in pri smisr ¢/ nod/ oa si s3/doc/ CR Rusers. pdf.

Chapter 8

Compiling and running OASI S3

8.1 Compiling OASIS3 and TOYCLIM

Compiling OASIS3 and TOYCLIM (see section 8.2.1) can be done using the top makefile

Tophkefi | eGasi s3 and platform dependent header files as described in section 8.1.1. Note OASIS3

is temporarily released without the corresponding PRISM Standard Compile Environment and Running
Environment (SCE/SRE); they will be included when the migration from CVS to Subversion will be
realized in CERFACS.

During compilation, a new directory branch is created / pri smt arch, where arch is the name of the com-
piling platform architecture (e.g. Linux). After successful compilation, resulting executables are found in
[prismt arch/bin ,librariesin/prismt arch/lib and object and module filesin/prism arch/build .
The different pre-compiling flags used for OASIS3 and its associated PSMILe library are described in
section 8.1.2.

8.1.1 Compilation with TopMakefileOasis3

Compiling OASIS3 and TOYCLIM using the top makefile TopMakefi | eCas i sS3 can be done in di-
rectory pri smisrc/ nod/ oasis3 util /nake dir . Tophkefil eGas i s 3 must be completed
with a header file n@ake. your_platform specific to the compiling platform used and specified in

pri smsrc/ nod/ o asis3 util/ make dir/make.inc . One of the files n@ke. pgi cerfacs ,
nake.sx frontend or nake.ai X can by used as a template. The root of the prism tree can be any-
were and must be set in the variable PR SVHME in the nake. your _platform file. The choice of MPI1,
MPI2 or NONE (interpolator-only mode, see section 6.1) is also done in the n@ke. your platform file (see
SN therein).

The following commands are available:

e nake -f TopMkefileCas is3

compiles OASIS3 libraries clim, anaisg, anaism, fscint, scrip and creates OASIS3 main executable
oasi s3. $AHAN x (where 3GHAN isMA1 ,MA2 or NONE) ;

o make -f TopMkefileCas is3 toyclim

compiles OASIS3 libraries as above, compiles mpp_io and psmile librairies, and creates OASIS3 and
TOYCLIM executables oasis3.MPI[1/2].x, toyatm.MPI[1/2].x, toyoce.MPI[1/2].x and toylan.MPI[1/2].x

bl

e ke clean -f TopMkefileCas is3:

cleans OASIS3 and TOYCLIM compiled files, but not the libraries ;
e ndke realclean -f TopMkefil eCasi s3:

cleans OASIS3 and TOYCLIM compiled files including libraries.

46

8.1. COMPILING OASIS3 AND TOYCLIM

Log and error messages from compilation are saved in the files COMP.log and COMP.err in make dir.

8.1.2 CPP keys

The following CPP keys are coded in OASIS3 and associated PSMILe library and can be specified in
GFCE in nake. your_platform file.

To indicate which communication technique will be used (see sections 4.1 and 5.2):

— use _.conm _MA 2 (by default): CLIM/MPI2
- use _coom _MA1 : CLIM/MPII
— use _conm _NONE : no communication technique for Oasis (interpolator-only mode NONE)
The SIPC, PIPE and GMEM communication techniques available in previous versions should still
work but are not maintained anymore and were not tested.
To indicate the precision for REAL variables:
— use realtype _double (by default): to exchange double precision coupling fields de-
clared as REAL(ki nd=SELECT D REAL _KINX(12, 307))
— use realtype single :toexchange single precision coupling fields declared as
REAL(kind=SHEC TEDREAL KINJX6, 37))
Note that if use realtype single is activated the compiling option promoting reals should be
removed from FOORLAGS

When linking OASIS3 and PSMILe with a netCDF library which is highly recommended! (the
opposite case should work but was not fully tested):

- use _net @TF
Mandatory for compiling the mpp_io and psmile libraries:
— use _|ibMA
Mandatory for compiling the mpp_io library if LAM implementation of MPI is used:
- use LAM_MA
For more information in log files *.prt* during the psmile library exchanges:
- _VERBCE
For more debugging information to the standard output from the mpp_io library:
- 0BG
The CPP key _._DEBUG can also be activated for:
— deadlock detection in clim and psmile librairies;
— more debugging information in log files *.prt* during the psmile library I/Os;
— in SCRIPR vector transformation, for writing the resulting vertical component in the spherical
coordinate system after interpolation to a file proj ecti on. nc (see section 6.4).
To compile the PSMILe communication library without the I/O functionality (see section 5.3), i.e
to compile only empty routines in pri smsrc/lib/ nppio:
— key nol O
For compiling without linking the SCRIP library:
— key _noSRP

Other platform dependent CPP keys, that should be automatically activated on the corresponding
platforms, are defined and used in pri smisrc/lib/m ppio/include

"Linking with netCDF is mandatory when using SCRIPR transformations (see section 6.4).

CHAPTER 8. COMPILING AND RUNNING OASIS3
8.2 Running OASIS3 in coupled mode with TOYCLIM

In order to test the OASIS3 coupler in a light coupled configuration, CERFACS has written 3 “toy” com-
ponent models, mimicking an atmosphere model (toyatm), an ocean model (toyoce), and a chemistry
model (toyche). These “toy” component models are ‘empty’ in the sense that they do not model any real
physics or dynamics. The coupled combination of these 3 “toy” component models through OASIS3 cou-
pling software is refered to as the TOYCLIM coupled model; the TOYCLIM coupling is realistic as the
coupling algorithm linking the toy component models, the size and the grid of the 2D coupling fields, and
the operations performed by OASIS3 on the coupling fields are realistic.

The current version of OASIS3 and its TOY CLIM example coupled model was successfully compiled and
run on NEC SX6, IBM Power4, and Linux PC DELL, and previous versions were compiled and run on
many other platforms.

Compiling OASIS3 and TOYCLIM was described in section 8.1. In the following section, the TOY CLIM
example coupled model is first described in more detail (see section 8.2.1), then instructions on how to
run TOYCLIM are given in section 8.2.2.

8.2.1 TOYCLIM description
The toyoce model

The toyoce model, which sources can be found in pri smisrc/ nod/ t oy oce /src,has a 2D logically-
rectangular, streched and rotated grid of 182x152 points, which corresponds to a real ocean model grid
(the pole of convergence is shifted over Asia). Toyoce timestep is 14400 seconds; it performs therefore 36
timesteps per 6-day run.

OASIS3 PRISM System Model Interface (PSMILe) routines are detailed in section 4. At the beginning of
a run, toyoce performs appropriate PSMILe calls to initialize the coupling, define its grids, and declare its
I/0O or coupling fields. As toyoce is not parallel, it calls the PSMILe prism_def _partition routine to define
only one Serial partition containing the 182X152 grid points.

Then, toyoce starts its timestep loop. At the beginning of its timestep, toyoce calls the PSMILe prism _get
routine 7 times to request the fields named Field3 to Field9 on table 8.1. At the end of its timestep, toyoce
calls PSMILe prism_put routine to send fields named Fieldl and Field2 on table 8.1. The fields will be
effectively received or sent only at the coupling frequency defined by the user (see section 5.3). As toyoce
contains no real physics or dynamics, it defines a simple feed back between Field1 and Field3 and between
Field2 and Field7 such as:

Fieldl = Field3 + 1

Field2 = Field7 + 1

Finally, at the end of the run, toyoce performs the PSMILe finalization call.

The toyatm model

The toyatm model, which sources can be found in pri smisrc/ nod/ t oy at mi sr c, has a realistic
atmospheric T31 Gaussian grid (96x48 points). Its timestep is 3600 seconds; it therefore performs 144
timesteps per 6-day run.

As toyoce, toyatm performs, at the beginning of a run, appropriate PSMILe calls to initialize the coupling,
define its grids, and declare its I/O or coupling variables. Then toyatm retrieves a local communicator
for its internal parallelization with a call to PSMILe prism_get_localcomm routine, useful if the MA 1

communication technique is chosen by the user (see section 4.1). Toyatm can run on 1 or 3 processes,
depending on the variable i| _nbcpl proc (hardcoded to 3 by default). If the user modifies this vari-
able and hardcodes il nbcpl proc = 1, toyatm runs on only one process and defines only one Serial

8.2. RUNNING OASIS3 IN COUPLED MODE WITH TOYCLIM

partition containing the 96X48 grid points. If i | nbcplproc = 3, toyatm runs on 3 processes and its
decomposition depends on the cdec parameter, hardcoded to APPLE . In this case, each of the 3 toyatm
processes calls the PSMILe prism_def_partition routine to define 1 segment of an APPLE decomposition
(1536 grid points per segment). If the user changes the hardcoded value of cdec to BOX, each process
will define 1 ‘box’ of a BOX decomposition; the first two processes treat a box of 64X24 points, while the
third process treats a box of 128X12 points. If the user hardcodes cdec= QRANGE , each process will
define a partition of two segments of 768 points distant of 1536 points.

Then, toyatm starts its timestep loop. At the beginning of its timestep, toyatm calls the PSMILe prism _get
routine 3 times to request the fields named Fieldl, Field2 and Field11 on table 8.1. At the end of its
timestep, toyatm calls PSMILe prism_put routine to send fields named Field4 to Field10 on table 8.1. The
fields will be effectively received or sent only at the coupling frequency defined by the user (see section
5.3). As toyatm contains no real physics or dynamics, it defines a simple feed back between the different
fields as:

Field5 = Fieldl + 1
Field? = Field2 + 1
Fieldl0 = Fieldll 4+ 1
Field4d = Fieldl + 1
Field8 = Field2 + 1
Field6 = Fieldl + 1
Field9 = Field2 + 1

Finally, at the end of the run, toyatm performs the PSMILe finalization call.

The toyche model

Toyche, which sources can be found in prisnisrc/ nod/to yche/src, is integrated on the same
atmospheric model grid than toyatm. Its timestep is 7200 seconds; it therefore performs 72 timesteps per
6-day run.

As the other toymodels, toyche performs, at the beginning of a run, appropriate PSMILe calls to initialize
the coupling, define its grids, and declare its I/O or coupling variables; it also retrieves a local commu-
nicator if needed. As toyche has the same grid than toyatm, a direct exchange of coupling fields can
occur between those two models, without going through OASIS3 interpolation process. To insure this,
the coupling field must have a field status IGNORED’ or ‘IGNOUT’ in the OASIS3 configuration file
namcouple (see section 5.3) and the two models must have also the same parallel decomposition. Toyche
decomposition is hardcoded the same way than toyatm, and if the user modifies the toyatm decomposition,
he has to modify the toyche decomposition the same way by changing toyche values fori| _nbcpl proc
and cdec (see above for toyatm).

At the beginning of its timestep, toyche calls the PSMILe prism_get routine to request Field10 (see table
8.1). Atthe end of its timestep, toyche calls PSMILe prism_put routine to send Field11. As toyche contains
no real physics or dynamics, it defines a simple feed back between Field11 and Field10 such as:

Fieldll = Fieldl0 + 1

Finally, at the end of the run, toyche performs the PSMILe finalisation call.

CHAPTER 8. COMPILING AND RUNNING OASIS3

TOYCLIM coupling algorithm

The coupling algorithm between the TOYCLIM component models toyoce, toyatm, and toyche is de-
scribed here.

Table 8.1 lists the coupling fields exchanged between those 3 model components, giving the symbolic
name used in each component and indicating whether the model produces the field (src) or receives it

(tgt).

‘ ‘ toyoce ‘ toyatm ‘ toyche restart ‘ function
Fieldl SOSSTSST (src) SISUTESU (tgt) fldol.nc Fy
Field2 | SOICECOQV (src) | SIICECOV (tgt) fldol.nc Fy
Field3 | SOALBEDO (tgt) SOALBEDO.nc
Field4 | SONSHLDO (tgt) | CONSFTOT (src) fldal.nc Fy
Field5 | SOSHFLDO COSHFTOT (src) F
Field6 | SOWAFLDO (tgt) | COWATFLU (src) fldal.nc Fy
Field7 | SORUNOFF (tgt) | CORUNOFF (src) fldal.nc Fy
Field8 | SOZOTAUX (tgt) | COZOTAUX (src) flda2.nc F3
Field9 SOMETAUY (tgt) | COMETAUY (src) flda2.nc F;3
Field10 COSENHFL (src) | SOSENHFL (tgt) | flda3.nc I
Fieldl1 COTHSHSU (tgt) | SOTHSHSU (src) | fldad.nc Fy

Table 8.1: Coupling and 1/0 fields of the TOYCLIM coupled model. The symbolic name used in each toy model is
given and it is indicated whether the model produces the field (src) or receives it (tgt). The function used
to create the field in the initial restart file is also given.

Figure 8.1 illustrates the coupling algorithm between the 3 TOYCLIM toy models for Field,, Fields,
Field4, F’ieldlo, and Fieldn.

Field; is sent from toyoce component to toyatm component at the coupling frequency dtF' defined
by the user in the configuring file namcouple. As interpolation is needed between toyoce and toyatm
grids, this exchange must go through OASIS3 interpolation process. In the namcouple, Field, field
status must therefore be EX PORTED and the interpolation must be defined. If the user wants the
field to be also automatically written to files before being sent (below the prism_put), and after being
received (below the prism_get), he can choose the field status £X POUT'. In toyoce and toyatm codes, the
prism_put and prism_get routines are respectively called every timestep with an argument corresponding
to the time at the beginning of the timestep. The lag of F'ield;, defined as 4 hours (14400 seconds) in
the namcouple, is automatically added to the prism_put time argument; the prism _put called at the toyoce
timestep preceeding the coupling period therefore matches the prism_get called in toyatm at the coupling
period.

At the beginning of the run (i.e. at time = 0), the toyoce prism_put for F'ield; is not activated (as a positive
lag is defined for F'ield;) and OASIS3 automatically read F'ield; in its coupling restart file, fldol.nc, and
sends it to toyatm component after interpolation. The different functions used to create the fields in the
initial restart file are also indicated in table 8.1. They are defined as follows:

Fy = 2 + cos[m x acos(cos(0)cos(¢))]
Fy = 24 cos*(0)cos(2¢)
F3 =2+ 5in'%(2¢)cos(16¢)

F represents a global dipole reaching its maximum and minimum values at the equator, respectively at the
date-line and at the Greenwich meridian. F represents two dipoles reaching respectively their maximum
and minimum values at the equator, respectively at the date-line and at 90° W, and at the Greenwich
meridian and at 90° E; it is similar to a spherical harmonic with | = 2 and m = 2, where | is the sherical

8.3. RUNNING OASIS3 IN INTERPOLATOR-ONLY MODE

harmonic order and m is the azimuthal wave number. F5 represents a series of dipoles centered at 45° N
and 45° S; it is similar to a spherical harmonic with | =32 and m = 16 and is useful for testing interpolation
of fields with relatively high spatial frequency and rapidly changing gradients.

The exchange of F'ields from toyoce to toyatm and Fieldy, Flieldg, Fieldr, Fieldg and Fieldyg from
toyatm to toyoce follow exactly the same logic as for Flield;.

Fields as a status | NAUT in the namcouple. Fields will therefore not be exchanged between two models
but will be read from a file automatically below the target model toyoce prism_get calls, at the user-defined
frequency in the input file also specified in the namcouple, SOLBEDQ nc

Flields as a status of QJIPUT in the namcouple. It will therefore be only automatically written to a file at
the user-defined frequency, below the source model toyatm prism_put calls. The name of the file will be
automatically composed of the field symbolic name (here CC3HTOI) and of the begin and end dates of
the run. The prism_get calls in the toyoce model will not be activated at all.

Flieldyy and Field;; are exchanged respectively from toyatm to toyche and from toyche to toyatm fol-
lowing F'ield; logic described here above, except that the exchanges take place directly between the
component models without going to OASIS3 interpolation process, as toyatm and toyche have the same
grid and the same parallel partition. The fields status chosen by the user for those fields in the namcouple
should therefore be | GNORED (or | GNOUJT if the user wants the fields also automatically be written to
files below the prism_put and after the prism_get). At the beginning of the run (i.e. at time = 0), the toyoce
prism_get called to receive those fields will automatically read the fields in their corresponding coupling
restart files flda3.nc and flda4.nc.

8.2.2 Running TOYCLIM using the script run _toyclim

Data for running TOYCLIM are contained in tar filei nput toyclim standard standard _prism
2-2.tar.gz orinput _toyclim standard _standard _prism 2-2 single.tar.gz in di-
rectory prismidata/toy ¢l i m. Input files and script are located in directory pri smiutil/runn ing
toyclim .

To run TOYCLLIM, one has to compile OASIS3 and the 3 TOYCLIM component models (see section
8.1), to adapt the “User’s section” of the running script pri smutil/runn ing/t oycl im/scri pt/
run _toyclim for his/her platform, and to launch it. The script run _toyclim was tested on Linux PC,
NEC SX-6, and IBM Power4.

To run the single precision case, OASIS3 and the 3 component models have to be compiled in sin-
gle precision (see section 8.1.2), the configuration file prismutil/run ni ng/ toycli minput/
nantoupl € _single has to be renamed nantoupl € (in the same directory, so to be used automati-
cally), and conp _preci si on=si ngl e has to be specified in run toyclim . The configuration file
nantoupl € _singl e has to be used because the original nantoupl € specifies some MYA C transfor-
mations using binary auxiliary files that were not converted; the results obtained with nantcouple single ,
into which the MYA C transformations are replaced by SCR PR O STV@ET interpolations, will be
slightly different.

8.3 Running OASIS3 in interpolator-only mode

OASIS3 can be used in an interpolator-only mode, in which case it transforms fields without running any
model (see section 6.1). Two test-cases are provided with OASIS3 to illustrate its uses in this mode, the
“testinterp” test-case (see section 8.3.1) and the “testNONE” test-case (see section 8.3.2).

CHAPTER 8. COMPILING AND RUNNING OASIS3

dtF1o
dtF11

CHE Flll ‘FIOT F”U?IOT - F;l - Fliji - iFll

Fio dtCHE .@
h +1h
i (123 1)
@ dtATM

Fii_ < ’ F11 F10

ATM OL FIOT NFlll FIOT ‘Flll FIOT NFlll FIOT NFlll
G I BN W

@ F1 F4
F1

— — — — r — —

F4
OASIS +4h] §lh
@ F4 @
ol.nc
dtOCE
OCE O" FIT 1F4l F]T 1F4 Fl | \F4V F1
P3| /T ™ 144
dtF3
dtF1
dtF4

SOALBEDO.nc SOALBEDO.nc

Figure8.1: Exchange algorithm between the 3 TOYCLIM component models for fields Fiield;, Fields, Fieldy,
Fieldlo, and Fieldn.

8.3. RUNNING OASIS3 IN INTERPOLATOR-ONLY MODE

8.3.1 The “testinterp” test-case

The “testinterp” test-case can be run to test the interpolation of different source fields corresponding
to analytical functions and to evaluate the error between the interpolated fields and the same analytical
functions calculated on the different target grids.

All files needed to run this test-case can be found in pri smdata/tes ti nt erp/i nput and pri sm
data/testinterp /restart .

To run “testinterp”, OASIS3 first has to be compiled in interpolator-only mode NONE (see section 8.1).
Then the programs that will calculate the interpolation error, i.e. gen error.f90 and gen error

_vector.f90 (for vector fields) in directory prismutil/runn ing/testinterp/err or have
to be compiled (see script SC _conp _error).

Then, one has to adapt and execute the running script prismiutil/runni ng/t esti nterp/
script/sc run _testinterp . With TIMEEONE | the configuration file pri snidat a/ t est inter p/

i nput / nancoupl e _O\E , the input files f| dal. nc, fl da2. nc, flda3. nc, f1dbl. nc,
fldol.nc andfldzl.nc fromprismdata/tes ti nterp/r estart and the input files aal i n. nc
and calin.nc from prisnidata/testi nt er p/ restart /vector are used. This example also
shows one vector interpolation (field components a_at42 | and c at42 _.J). The test-case automatically
writes the error fields in error _*.nc files and error statistics in | og * files.

To run the example into which OASIS3 interpolates many time occurrences from one input file, put
TIMEEMNY insc run testinterp . The configuration file pri snidat a/ t est interp/input/
nancoupl e _MM\Y and the input file fldin.nc in prisndata/tes tinterp/r estar t is then
used.

The results obtained after running the testinterp test-case should match the ones in pri snidat &
testinterp/outd a a.

8.3.2 The “testNONE” test-case

All files to run the “testNONE” test-case can be found in pri smiutil/runn ing/ testNONE. This
test-case provides a flexible environnement to test the interpolation specified in the | NPUI/ nancoupl e
configuration file from a source grid to a target grid, both grids being defined in regular OASIS3 grid data
files grids.nc, masks.nc, areas.nc (see section 7.2).
To run “testNONE”, the user has to adapt the “User specifications” part of the running script SC run NONE .
In particular, he has to specify the directory for the grid data files, the directory for the nantoupl € and
cf nane table txt files, the source and target grid prefixes in the nantoupl € and in the grid data
files (see section 5.3.1), an analytic function, and whether or not the error on the target grid will be calcu-
lated on all points (MMSKERROR-NOI) or only on non masked points (MSKERRIR-YES).
When launched, the running script SC _run _NONE :

e creates a working directory

e compiles and runs the program PROGcreate inputfield.f90 that creates an input field
using the chosen analytical function on the specified source grid in file fI di n. nc

e copy all required input and data file to the working directory

e run oasis3 that interpolates the analytical field from fldin.nc with the interpolation specified in
the nantoupl e

e compile and run the program PROBcreate errorfiel d.f90 that calculates the error be-
tween the resulting interpolated field and the field defined by the chosen analytical function on the
specified target grid, and writes it to the file error. nc

Appendix A

Thegrid typesfor thetransformations

As described in section 6, the different transformations in OASIS3 support different types of grids. The
characteristics of these grids are detailed here.

1. Grids supported for the | NTHRP interpolations (see section 6.4)

‘A grid : this is a regular Lat-Lon grid covering either the whole globe or an hemisphere,
going from South to North and from West to East. There is no grid point at the pole and at the
equator, and the first latitude has an offset of 0.5 grid interval. The first longitude is 0° (the
Greenwhich meridian) and is not repeated at the end of the grid (J(FER =P and $NFER =0).
The latitudinal grid length is 180/NJ for a global grid, 90/NJ otherwise. The longitudinal grid
length is 360/NI.

‘B grid : this is a regular Lat-Lon grid covering either an hemisphere or the whole globe,
going from South to North and from West to East. There is a grid point at the pole and at
the equator (if the grid is hemispheric or global with NJ odd). The first longitude is 0° (the
Greenwhich meridian), and is repeated at the end of the grid (BCPER =P and $NPER =1). The
latitudinal grid length is 180/(NJ-1) for a global grid, 90/(NJ-1) otherwise. The longitudinal
grid length is 360/(NI-1).

‘G grid : this is a irregular Lat-Lon Gaussian grid covering either an hemisphere or the
whole globe, going from South to North and from West to East. This grid is used in spectral
models. It is very much alike the A grid, except that the latitudes are not equidistant. There is
no grid point at the pole and at the equator. The first longitude is 0° (the Greenwhich meridian)
and is not repeated at the end of the grid (JCPER = P and $NPER = 0). The longitudinal grid
length is 360/NI.

‘L' grid : this type covers regular Lat-Lon grids in general, going from South to North and
from West to East.. The grid can be described by the latitude and the longitude of the southwest
corner of the grid, and by the latitudinal and longitudinal grid mesh sizes in degrees.

‘Z grid : this is a Lat-Lon grid with non-constant latitudinal and longitudinal grid mesh
sizes, going from South to North and from West to East. The deformation of the mesh can
be described with the help of 1-dimensional positional records in each direction. This grid is
periodical (JCPER = P) with $NPER overlapping grid points.

‘Y orid : this grid is like “Z’ grid except that it is regional (J(PFER =R and $NPER = 0).

2. Grids supported for the SR PR interpolations

‘LR grid : The longitudes and the latitudes of 2D Logically-Rectangular (LR) grid points
can be described by two arrays | ongi tude(i ,j) and latitude(i,j) , where i and j
are respectively the first and second index dimensions. Streched or/and rotated grids are LR
grids. Note that A, B, G, L, Y, or Z grids are all particular cases of LR grids.

54

‘U grid : Unstructured (U) grids do have any particular structure. The longitudes and the
latitudes of 2D Unstructured grid points must be described by two arrays | ongi t ude(nbr pts, 1)
and | atitude(nbr pts,1) ,where nbr_pts is the total grid size.

‘D ogrid The Reduced (D) grid is composed of a certain number of latitude circles, each

one being divided into a varying number of longitudinal segments. In OASIS3, the grid data
(longitudes, latitudes, etc.) must be described by arrays dimensioned (nbr pts,1) , where

nbr pts is the total number of grid points. There is no overlap of the grid, and no grid point

at the equator nor at the poles. There are grid points on the Greenwich meridian.

Appendix B

Changes between versions

Here is a list of changes between the different official OASIS3 versions.

B.1 Changes between oasis3 _prism 2 5andoasis3 _prism 2.4

The changes between version 0asi S3 _prism 2 5 and version 0asi S3 prism 2 4 delivered in De-
cember 2004 are listed here after. Please note that those modifications should not bring any difference in
the interpolation results, except for SCRIPR/DISTWGT (see below).

e Bug corrections:

— Inprismsrc/lib/s crip/src/ scri pr np.F:initialisation of dst _array(:) ;bug
fix announced to the mailing list diff-oasis@cerfacs.fr on 02/02/2006.

— Inprismsrc/lib/p smile/src/pri smenddef _proto.F andprismsrc/lib/
climsrc/QIM Sart _MA.F :the call to MPI barrier (that created a deadlock when not
all processes of a component model were exchanging data with the coupler) was changed for
a call to MPI_wait on the previous MPI Isend; bug fix announced to the mailing list diff-
oasis @cerfacs.fr on 02/23/2006.

— For SCRIPR/DISTWGT, in prisnmisrc/lib/ scri p/lsrc/remap distwgt.f : line
190 was repeated without epsilon modification; bug fix announced to the mailing list diff-
oasis@cerfacs.fr on 03/21/2006.

— In prismisrc/lib/p smil e src/mod prism put proto. 0 , for prism _put
proto r28 and prism _put _proto _r24 , the reshape of the 2d field was moved after the
test checking if the field is defined in the namcouple (thanks to Arnaud Caubel from LSCE).

e Modification in SCRIP interpolations

— For SIR R interpolations (see section 6.4), the value 1.0E4+20 is assigned to target grid
points for which no value has been calculated if pri smsrc/li b/ scrip/src/scriprmp.f
orvector. 0 (for vector interpolation) are compiled with || weightot = .true.

— For S(R PR GALB/GET :if routine prisnmisrc/lib/s crip/ srclremapgauswgt.f
is compiled with |1 _nnei=true. , the non-masked nearest neighbour is used for target
point if all original neighbours are masked (see section 6.4).

— ForSRPRBABC (routine prismisrc/lib/s cri p/ src/remap bicubic.f),
the convergence criteria was modified so to ensure convergence even in single precision.

— For SR PR QONERY (routine prismsrc/lib/s cri p/ src/remap conserv.f),

a test was added for non-convex cell so that integration does not stall.

— The routine prismsrc/lib/sc ri p/ src/cor ners.F was modified so to abort if it is
called for the target grid, as the automatic calculation of corners works only for Logically-

56

B.2. CHANGESBETWEENOS S3 PRSM 24ANDOSS3 PRSM 2.3

Rectangular (LR) grids and as the target grid type is unknown. If needed, the reverse remap-
ping, in which the current target grid become the source grid, can be done .

e Other important modifications

— A new PSMILe routine pri smisrc/ i b/ psml e src/ prismget freq. F wasadded;
this routine can be used to retrieve the coupling period of field (see section 4.6.3).

— The routines of the npp _i 0 library in prisnisrc/lib/m pp io changed name and were
merged with the OASIS4 npp _i 0 library.

— Routine pri snmsrc/ nod/ oa si s3/src/extr ap.F was modified to ensure that the ex-
trapolation works even if the MM value is very big (thanks to J.M. Epitalon).

— In the namcouple, there is no need anymore to define a lag greater than O (e.g. LAG=+1) for
fields in mode NONE.

— Diverse modifications were included for successful compilation with NAGW compiler: non
portable use of “kind”, etc. (thanks to Luis Kornblueh from MPI).

— Inprismsrc/lib/ psnile/no dprism get proto. 0 , a potential deadlock was
removed (the master process was sending a message to itself)(thanks to Luis Kornblueh from
MPI).

— Routine prismisrc/lib/sc ri p/ src/ scriprmpvector. R0 was completely rewrit-
ten for more clarity.

— Obsolete transformations INVERT and REVERSE were removed from the toy coupled model
TOYCLIM (in file pri smuti |/ runn ing/ toycl im/i nput/ nantoupl e. Thischange
does not affect the statistics printed in the cpl out but changes the orientation of some fields
in the NetCDF ouput files (see the results in pri snidat &/ t oy cli moutdat a).

e Other minor modifications:

— Inprismisrc/lib/ps m le/src/ prismenddef _proto.F , allocation is done only
for rg_field_trans or dg_field_trans depending on precision for REAL (but not for both, to save

memory).

— In few routines in prismisrc/lib/c ['i mand in pri smsrc/ nod/ oasi s3, parenthe-
ses were added to make sure that && has priority over || in CPP instructions (thanks to A.
Caubel from LSCE).

— Routines scri p/ src/ corne rs.f,netcdf.f ,andscriprnp.f were renamed
corners.F ,netcdf.F ,scriprnp. F and the line “INCLUDE ’netcdf.inc’ ” was changed
for “#include <netcdf.inc> "

B.2 Changes between oasis3 _prism 2 4 andoasis3 _prism 2.3

The changes between versions tagged 0asi S3 prism 2 4 and oasis3 prism 2 3 delivered in July
2004 are the following:

e Update of compiling and running environments with version pri sm 2-4 of PRISM Standard Com-
piling Environment (SCE) and PRISM Standard Running Environment (SRE), which among other
improvements include the environments to compile and run on the CRAY X1 (see the directories
with <node>=hal ticl), thanks to Charles Henriet from CRAY France, and on a Linux station
from Recherche en Prévision Numérique (Environnement Canada, Dorval, Canada) (see the direc-
tories with <node>=arnt28).

e prismsrc/nod/ o asis3/src/i ni iof .F:the opening of the coupling restart files is done
only if the corresponding field has a lag greater than O; note that this implies that all fields in mode
NONE must now have a lag greater than 0 (e.g. LAG=+1) (thanks to Veronika Gayler from M&D).

APPENDIX B. CHANGES BETWEEN VERSIONS

B.3

prismisrc/lib/p smile/src/pri smdef var proto.F :contrary to what was previously
described in the documentation, PR SVl _Doubl e is not supported as 7! argument to describe the
field type; PR SM _Real must be given for single or double precision real arrays.

prismisrc/ nod/ o asis3/src/i ni par .F90: For upward compatibility of SCRIPR inter-
polation, “VECTOR?” is still accepted in the namcouple as the field type and leads to the same
behaviour as before (i.e. each vector component is treated as an independent scalar field). To have
a real vector treatment, one has to indicate "VECTOR I” or ”"VECTOR_J” (see section 6.4).

Bug corrections in:

— prismisrc/lib/s crip/ src/scri prmpyvector. 0 : In some cases, some local
variables were not deallocated and variable di mid was declared twice.

— prismisrc/lib/p smile/src/mod psnile o0.F0 : correctallocation of array host-
ing the longitudes (thanks to Reiner Vogelsang from SGI Germany).

— prismisrc/lib/p smile/src/wri te file.FR0 : to remove a deadlock on some ar-
chitecture (thanks to Luis Kornblueh from MPI).

— prismisrc/lib/p smile/src/pri smenddef _proto.F : the error handler is now
explicitely set to MA HRRIRS RETURN before the call to M@ _Buffer Detach to avoid
abort on some architecture when the component model is not previously attached to any buffer
(thanks to Luis Kornblueh from MPI).

— prismisrc/lib/s cripl/ src/remapconserv.f (thanks to Veronika Gayler from M&D).
— prismsrc/nod/ o asis3/src/ini cnt .F
— prismisrc/lib/s crip/ src/remapdstwgt.f

Changes between casi s3 _prism _2_3 and casis3 _prism 2.2

The changes between versions tagged 0asi S3 _pri sm 2 3 delivered in July 2004 and 0asi s3 prism 2 2
delivered in June 2004 are the following:

B.4

Bug correction of the previous bug fix regarding ordering of grid and data information contained in
I/O files when | VERT or RVERE transformations are used: the re-ordering now occurs only for
source field if | NVERT is used, and only for target field if REVERIE s used.

LGPL license: OASIS3 is now officially released under a Lesser GNU General Public License
(LGPL) as published by the Free Software Foundation (see pri s sr ¢/ nod/ oasis 3 GOPYR GIr
and pri smisrc/ nod/ o asis3/src/couple.f)

Upgrade of compiling and running environments: The compiling and running environments have
been upgraded to the PRISM Standard Compiling and Running Environment version dated August
5th 2004, that should be very close to “prism_2-3.

Treament of vector fields: The interpolation algorithms using the SCRIP library now support vector
fields, including automatic rotation from local to geographic coordinate system, projection in Carte-
sian coordinate system and interpolation of 3 Cartesian components, and support of vector compo-
nents given on different grids. New routines have been added in pri smsrc/lib/s crip/src:
scriprnp _vector.F0 androtations.F0 . For more detail, see SR PR in section 6.4.
All include of mpif.h are now written ‘#include <mpif.h>’.

The output format of GEIKI N and GHIKQJT results is now E22.7

Changes between casis3 _prism 2 2 andoasis3 prism 2.1

The changes between versions tagged oasi S3 _prism 2 2 delivered in June 2004 and casi s3 prism 2 1
delivered to PRISM in April 2004 are the following:

B.5. CHANGESBETWEENOS S3 FPRSM 21 ANDOSS3 FRSM 12

B.5

The changes between versions tagged 0asi S3 _prism 1 2 delivered in September 2003 and 0asi s3 prism 21

Bug corrections

— | NTER? GALBS AN and SR FR GALB/GT transformations work for ‘U’ grids.
— The grid and data information contained in I/O files output by the PSMILe library have now a
coherent ordering even if | N\VERT or RVEBRGE transformations are used.
OASIS3 and the TOYCLIM coupled model are ported to IBM Power4 and Linux Opteron, which
are now included in the Standard Compiling and Running Environments (SCE and SRE).

SIPC technique communication is re-validated.

aim _MxSegnent s = 338 inprisnisrc/lib/ clim/sr ¢/ nmdclimF0 andinprismsrc/lib/

338 is presently the largest value needed by a PRISM model.

MA _BSend : below the call to pri sm _enddef _proto , the PSMILe tests whether or not the
model has already attached to an MPI buffer. If it is the case, the PSMILe detaches from the buffer,
adds the size of the pre-attached buffer to the size needed for the coupling exchanges, and reattaches
to an MPI buffer. The model own call to MA _Buffer _Attach must therefore be done before the
call to prism _enddef _proto . Furthermore, the model is not allowed to call MA BSend after
the calltoprism termnate _Jroto , asthe PSMILe definitively detaches from the MPI buffer
in this routine. See the example in the toyatm model in pri smisrc/ nod/ t o yatm/src.

Changes between casis3 _prism 2.1 andoasis3 _prism 1.2

delivered to PRISM in April 2004 are the following:

Bug corrections

— Thanks to Eric Maisonnave, a bug was found and corrected in ~ /prism/src/lib/scrip/src/scriprmp.f:

“sou_mask” and “tgt_mask” were not properly initialised if weights and addresses were not
calculated but read from file.

LIRS

— Some deallocation were missing in prism_terminate_proto.F (“ig_def_part”, “ig_length part”,
“cg_ignout_field”).

— Thanks to Arnaud Caubel, a bug was found and corrected in ~ /prism/src/lib/psmile/src/write file.F9O.

In case of parallel communication between a model and OASIS3 main process, the binary cou-
pling restart files were not written properly (NetCDF coupling restart files are OK).

Routines renamed

The routines preproc. f, extrap.f, iniiof.f inprisnisrc/nod o asis3/src were

renamed to preproc. F, extrap. F, iniiof.F ,as a CPP key ‘key_openmp’ was added.
Please note that this key, allowing openMP parallelisation, is not fully tested yet.

Modifications in the namcouple

— The third entry on the field first line now corresponds to an index in the new auxiliary file
cf_name_table.txt (see sections 5.3 and 7.1).

— For | GNORD GNJT and QJIPUT fields, the source and target grid locator prefixes must
now be given on the field second line (see section 5.3.2)

A new auxiliary file cf_name_table.txt

For each field, the CF standard name used in the OASIS3 log file, cplout, is now defined in an
additional auxiliary file cf_name_table.txt not in i nipar. F anymore. This auxiliary file must be
copied to the working directory at the beginning of the run. The user may edit and modify this file
at her own risk. In cf_name_table.txt, an index is given for each field standard name and associated
units. The appropriate index has to be indicated for each field in the namcouple (third entry on the
field first line, see section 5.3).

PS |

APPENDIX B. CHANGES BETWEEN VERSIONS

This standard name and the associated units are also used to define the field attributes “long_name”
and “units” in the NetCDF output files written by the PSMILe for fields with status BEXPQT,
IGNAJT and QJTRUT .

For more details on this auxiliary file, see section 7.1.
Many timesteps for mode NONE

In mode NONE, OASIS3 can now interpolate at once all time occurrences of a field contained in
an input NetCDF file. The time variable in the input file is recognized by its attribute “units”. The
acceptable units for time are listed in the udunits.dat file (3). This follows the CF convention.

The keyword $RNI ME in the namcouple has to be the number of time occurrences of the field to
interpolate from the input file. The “coupling” period of the field (4th entry on the field first line)
must be always “1”. Note that if $RUNTT ME is smaller than the total number of time ocurrences in
the input file, the first $BRINTTME occurrences will be interpolated.

For more details, see section 6.1.

Model grid data file writing

The grid data files grids.nc, masks.nc and areas.nc can now be written directly at run time by
the component models, if they call the new routines prism_start_grids_writing, prism_write grid,
prism_write_corner prism_write_mask, prism_write_area, prism_terminate_grids writing.

The writing of those grid files by the models is driven by the coupler. It first checks whether the
binary file grids or the netCDF file grids.nc exists (in that case, it is assumed that areas or areas.nc
and masks or masks.nc files exist too) or if writing is needed. If grids or grids.nc exists, it must
contain all grid information from all models; if it does not exist, each model must write its grid
informations in the grid data files.

See section 4.2 for more details.

Output of CF compliant files

The NetCDF output files written by the PSMILe for fields with status EXPQT, IGNJT and
QJIRAUT are now fully CF compliant.

In the NetCDF file, the field attributes “long_name” and “units” are the ones corresponding to the
field index in cf_name_table.txt (see above and section 7.1). The field index must be given by the
user as the third entry on the field first line in the namcouple.

Also, the latitudes and the longitudes of the fields are now automatically read from the grid aux-
iliary data file grids.nc and written to the output files. If the latitudes and the longitudes of the
mesh corners are present in grids.nc, they are also written to the ouput files as associated “bounds”
variable. This works whether the grids.nc is given initially by the user or written at run time by the
component models (see above). However, this does not work if the user gives the grid definition in
a binary file grids.

Removal of pre-compiling key “key_BSend”

The pre_compiling key “key_BSend” has been removed. The default has changed: by default, the
buffered MPI_BSend is used, unless NJBSH\D is specified in the namcouple after MPI1 or MPI2,
in which case the standard blocking send MPI_Send is used to send the coupling fields.

Appendix C

Copyright statements

C.1 OASIS3 copyright statement

Copyright 2006 Centre Europeen de Recherche et Formation Avancee en Calcul Scientifique (CERFACS).

This software and ancillary information called OASIS3 is free software. CERFACS has rights to use,
reproduce, and distribute OASIS3. The public may copy, distribute, use, prepare derivative works and
publicly display OASIS3 under the terms of the Lesser GNU General Public License (LGPL) as published
by the Free Software Foundation, provided that this notice and any statement of authorship are reproduced
on all copies. If OASIS3 is modified to produce derivative works, such modified software should be clearly
marked, so as not to confuse it with the OASIS3 version available from CERFACS.

The developers of the OASIS3 software are researchers attempting to build a modular and user-friendly
coupler accessible to the climate modelling community. Although we use the tool ourselves and have
made every effort to ensure its accuracy, we can not make any guarantees. We provide the software to you
for free. In return, you-the user—assume full responsibility for use of the software. The OASIS3 software
comes without any warranties (implied or expressed) and is not guaranteed to work for you or on your
computer. Specifically, CERFACS and the various individuals involved in development and maintenance
of the OASIS3 software are not responsible for any damage that may result from correct or incorrect use
of this software.

C.2 The SCRIP 1.4 copyright statement

The SCRIP 1.4 copyright statement reads as follows:

“Copyright 1997, 1998 the Regents of the University of California. This software and ancillary infor-
mation (herein called SOFTWARE) called SCRIP is made available under the terms described here. The
SOFTWARE has been approved for release with associated LA-CC Number 98-45. Unless otherwise in-
dicated, this SOFTWARE has been authored by an employee or employees of the University of California,
operator of Los Alamos National Laboratory under Contract No. W-7405-ENG-36 with the United States
Department of Energy. The United States Government has rights to use, reproduce, and distribute this
SOFTWARE. The public may copy, distribute, prepare derivative works and publicly display this SOFT-
WARE without charge, provided that this Notice and any statement of authorship are reproduced on all
copies. Neither the Government nor the University makes any warranty, express or implied, or assumes
any liability or responsibility for the use of this SOFTWARE. If SOFTWARE is modified to produce
derivative works, such modified SOFTWARE should be clearly marked, so as not to confuse it with the
version available from Los Alamos National Laboratory.”

61

Appendix D

The coupled modelsrealized with OASIS

Here is a list of (some of) the coupled models realized with OASIS within the past 5 years or so in Europe
and in other institutions in the world:

‘ Lab ‘ Cnt ‘ Vrs ‘ Atm Oce ‘ Comp ‘
Environment Canada | Canada | 3.0 | MEC GOM IBM Power4
IRI USA 2.4 | ECHAM4 MOM3 SGI Origin

IBM Power3

JPL(NASA) USA 24 | QTCM Trident SGI
JAMSTEC Japan 2.4 | ECHAM4 OPA 8.2 ES SX5
U. of Aus- 3.0 | Data atm. model | MOM4 SGI 03400
Tasmania tral. Compaq
BMRC Aus- 3.0 | BAM4 MOM4

tral. 2.4 | BAM3T47L34 | ACOM2 180X194X25
CAS-IIT India 3.0 | MM5 POM
IAP-CAS China AGCM LSM

Table D.1: List of couplings realized with OASIS within the past 5 years in institutions outside Europe . The
columns list the institution, the country, the OASIS version used, the atmospheric model, the ocean
model, and the computing platform used for the coupled model run.

62

‘ Lab ‘ Cnt ‘ Vrs ‘ Atm ‘ Oce ‘ Comp ‘

IPSL Fr 3.0 | LMDz 96x71x19 ORCA2 182x149x31 | SX6
+ ORCH/INCA + LIM
2.4 | LMDz 96x71x19 ORCA2 182x149x31 | VPP5000
2.4 | LMDz 72x45x19 ORCA4 92x76x31 VPP5000
2.4 | LMDZ 120X90X1 OPA ATL3 1/3 deg
2.4 | LMDZ 120X90X1 OPA ATL1 1 deg
Lodyc-ISAO Frlt | 2.3 | ECHAM4 T30/T42 L14 | ORCA2 182x149x31 | SX4,SX5
Météo-Fr Fr 3.0 | ARPEGE 4 ORCA2 VPP5000
2.4 | ARPEGE medias OPA med 1/8e VPP5000
2.2 | ARPEGE 3 OPA 8.1 + Gelato VPP5000
Mercator Fr 3.0 | interp. mode PAM (OPA)
CERFACS Fr 3.0 | ARPEGE 4 OPA9/NEMO VPP5000
CRAY XD1
PC Linux
2.4 | ARPEGE 3 ORCA2-LIM VPP5000
2.2 | ARPEGE 3 OPA 8.1 VPP700
ECMWF UK | 2.2 | IFS T63/T255 E-HOPE 2deg/1deg IBM Power 4
2.2 | IFS Cy23r4 T159L40 E-HOPE 2561.29 VPP700
2.2 | IFS Cy23r4 T95L40 E-HOPE 2561.29 VPP700
MPI Ger- | 3.0 | ECHAMS MPI-OM IBM Power4
ma- | 2.4 | ECHAMS T42/L19 C-HOPE T42+L.20 NEC-SX
ny 2.4 | PUMAT42/1.19 C-HOPE 2deg GIN NEC-SX
2.4 | EMAD E-HOPE T42+1.20 CRAY C-90
2.4 | ECHAMS T42/1.19 E-HOPE T42+L20 NEC-SX
IFM-GEOMAR | D 3.0 | ECHAMS NEMO
CGAM UK | 3.0 | HadAM3 2.5x3.75 L20 | ORCA2 182x149x31 | NEC SX6
2.4 | HadAM3 2.5x3.75 L20 | ORCA 182x149x31 T3E
SMHI Sw | 3.0 | ECHAM-RCA(reg.) SGI 03800
2.3 | RCA-HIRLAM (reg.) RCO-OCCAM (reg.)
INGV It 3.0 | ECHAMS MPIOM NEC SX6
KNMI NI 3.0 | ECHAMS MPIOM SGI IRIX64
DMI Dk 3.0 | ECHAM (glob.) NEC SX6
U.Bergen Nw | 3.0 | MM5 ROMS
NERSC Nw ARPEGE MICOM

Table D.2: List of couplings realized with OASIS within the past 5 years in Europe. The columns list the institution,
the country, the OASIS version used, the atmospheric model, the ocean model, and the computing
platform used for the coupled model run.

Bibliography

[1] http://gcmd.nasa.gov/records/LANL-SCRIP.html

[2] http://www.gfdl.noaa.gov/~ vb/mpp_io.html

[3] http://www.unidata.ucar.edu/packages/udunits/udunits.dat

[4] S. Valcke, A. Caubel, R. Vogelsang, and D. Declat: OASIS3 User’s Guide (oasis3_prism 2-4),
PRISM Report No 2, 5th Ed., CERFACS, Toulouse, France, 2004.

[5] S. Valcke, A. Caubel, D. Declat and L. Terray: OASIS3 Ocean Atmosphere Sea Ice Soil User’s
Guide, Technical Report TR/ICMGC/03-69, CERFACS, Toulouse, France, 2003.

[6] S. Valcke, L. Terray and A. Piacentini: OASIS 2.4 Ocean Atmosphere Sea Ice Soil, User’s Guide
and Reference Manual, Technical Report TR/ICMGC/00-10, CERFACS, Toulouse, France, 2000.

[7] L. Terray, S. Valcke and A. Piacentini: OASIS 2.3 Ocean Atmosphere Sea Ice Soil, User’s Guide
and Reference Manual, Technical Report TRICMGC/99-37, CERFACS, Toulouse, France, 1999.

[8] C. Cassou, P. Noyret, E. Sevault, O. Thual, L. Terray, D. Beaucourt, and M. Imbard: Dis-
tributed Ocean-Atmosphere Modelling and Sensitivity to the Coupling Flux Precision: the CATH-
ODe Project. Monthly Weather Review, 126, No 4: 1035-1053, 1998.

[9] L. Terray, O. Thual, S. Belamari, M. Déqué, P. Dandin, C. Lévy, and P. Delecluse. Climatology and
interannual variability simulated by the arpege-opa model. Climate Dynamics, 11:487-505, 1995

[10] E. Guilyardi, G. Madec, L. Terray, M. Déqué, M. Pontaud, M. Imbard, D. Stephenson, M.-A. Filib-
erti, D. Cariolle, P. Delecluse, and O. Thual. Simulation couplée océan-atmosphere de la variabilité
du climat. C.R. Acad. Sci. Paris, t. 320, série IIa:683-690, 1995.

[11] L. Terray and O. Thual. Oasis: le couplage océan-atmosphere. La Météorologie, 10:50-61, 1995.

[12] M. Pontaud, L. Terray, E. Guilyardi, E. Sevault, D. B. Stephenson, and O. Thual. Coupled ocean-
atmosphere modelling - computing and scientific aspects. In 2nd UNAM-CRAY supercomputing
conference, Numerical simulations in the environmental and earth sciences Mexico-city, Mexico,
1995.

[14] L. Terray, E. Sevault, E. Guilyardi and O. Thual OASIS 2.0 Ocean Atmosphere Seai Ice Soil User’s
Guide and Reference Manual Technical Report TR/ICGMC/95-46, CERFACS, 1995.

[14] E. Sevault, P. Noyret, and L. Terray. Clim 1.2 user guide and reference manual. Technical Report
TR/CGMC/95-47, CERFACS, 1995.

[15] P. Noyret, E. Sevault, L. Terray and O. Thual. Ocean-atmosphere coupling. Proceedings of the Fall
Cray User Group (CUG) meeting, 1994.

[16] L. Terray, and O. Thual. Coupled ocean-atmosphere simulations. In High Performance Computing
in the Geosciences, proceedings of the Les Houches Workshop F.X. Le Dimet Ed., Kluwer Academic
Publishers B.V, 1993.

64

