
PRISM
An Infrastructure Project for Climate Research in Europe

OASIS3 User Guide

prism 2-5

Edited by:
S. Valcke, CERFACS

PRISM–Support Initiative
Report No 3

September 2006

Copyright Notice
c© Copyright 2006 by CERFACS

All rights reserved.
No parts of this document should be either reproduced or commercially used without prior
agreement by CERFACS representatives.

How to get assistance?
Assistence can be obtained as listed below.
PRISM documentations can be downloaded from the WWW PRISM web site under the URL:
<http://prism.enes.org>

Phone Numbers and Electronic Mail Adresses

Name Phone Affiliation e-mail

Sophie Valcke +33-5-61-19-30-76 CERFACS oasishelp(at)cerfacs.fr

Contents

1 Acknowledgements 1

2 Introduction 3
2.1 Step-by-step use of OASIS3 . 3

3 The OASIS3 sources 4

4 Interfacing a model with the PSMILe library 5
4.1 Initialisation . 6
4.2 Grid data file definition . 6
4.3 Partition definition . 8

4.3.1 Serial (no partition) . 8
4.3.2 Apple partition . 8
4.3.3 Box partition . 8
4.3.4 Orange partition . 10

4.4 I/O-coupling field declaration . 11
4.5 End of definition phase . 12
4.6 Sending and receiving actions . 12

4.6.1 Sending a coupling field . 12
4.6.2 Receiving a coupling field . 13
4.6.3 Auxiliary routines . 13

4.7 Termination . 14
4.8 Coupling algorithms - SEQ and LAG concepts . 15

4.8.1 The lag concept . 15
4.8.2 The sequence concept . 18
4.8.3 A mix of lag and sequence: the sequential coupled model 18
4.8.4 Mixing sequential and parallel runs using prism put restart proto 21

5 The OASIS3 configuration file namcouple 22
5.1 An example of a simple namcouple . 22
5.2 First section of namcouple file . 24
5.3 Second section of namcouple file . 26

5.3.1 Second section of namcouple for EXPORTED , AUXILARY and EXPOUT fields . . 26
5.3.2 Second section of namcouple for IGNORED , IGNOUT , and OUTPUT fields 27
5.3.3 Second section of namcouple for INPUT fields 28

6 The transformations and interpolations in OASIS3 29
6.1 Using OASIS3 in the interpolator-only mode . 29
6.2 The time transformations . 30
6.3 The pre-processing transformations . 30
6.4 The interpolation . 32

i

ii CONTENTS

6.5 The “cooking” stage . 38
6.6 The post-processing . 40

7 OASIS3 auxiliary data files 41
7.1 Field names and units . 41
7.2 Grid data files . 41
7.3 Coupling restart files . 43
7.4 Input data files . 43
7.5 Transformation auxiliary data files . 44

7.5.1 Auxiliary data files for EXTRAP/NINENN ,EXTRAP/WEIGHT ,INTERP/SURFMESH ,
INTERP/GAUSSIAN , MOZAIC , and SUBGRID 44

7.5.2 Auxiliary data files for FILLING . 45
7.5.3 Auxiliary data files for SCRIPR . 45

8 Compiling and running OASIS3 46
8.1 Compiling OASIS3 and TOYCLIM . 46

8.1.1 Compilation with TopMakefileOasis3 . 46
8.1.2 CPP keys . 47

8.2 Running OASIS3 in coupled mode with TOYCLIM . 48
8.2.1 TOYCLIM description . 48
8.2.2 Running TOYCLIM using the script run toyclim 51

8.3 Running OASIS3 in interpolator-only mode . 51
8.3.1 The “testinterp” test-case . 53
8.3.2 The “testNONE” test-case . 53

A The grid types for the transformations 54

B Changes between versions 56
B.1 Changes between oasis3 prism 2 5 and oasis3 prism 2 4 56
B.2 Changes between oasis3 prism 2 4 and oasis3 prism 2 3 57
B.3 Changes between oasis3 prism 2 3 and oasis3 prism 2 2 58
B.4 Changes between oasis3 prism 2 2 and oasis3 prism 2 1 58
B.5 Changes between oasis3 prism 2 1 and oasis3 prism 1 2 59

C Copyright statements 61
C.1 OASIS3 copyright statement . 61
C.2 The SCRIP 1.4 copyright statement . 61

D The coupled models realized with OASIS 62

Chapter 1

Acknowledgements

We would like to thank the main past or present developers of OASIS are (in alphabetical order, with the
name of their institution at the time):

Arnaud Caubel (FECIT/Fujitsu)
Damien Declat (CERFACS)
Veronika Gayler (MPI-M&D)
Josefine Ghattas (CERFACS)
Jean Latour (Fujitsu-Fecit)
Eric Maisonnave (CERFACS)
Elodie Rapaport (CERFACS)
Hubert Ritzdorf (CCRLE-NEC)
Sami Saarinen (ECMWF)
Eric Sevault (Météo-France)
Laurent Terray (CERFACS)
Olivier Thual (CERFACS)
Sophie Valcke (CERFACS)
Reiner Vogelsang (SGI Germany)

We also would like to thank the following people for their help and suggestions in the design of the OASIS
software (in alphabetical order, with the name of their institution at the time):

Dominique Astruc (IMFT)
Sophie Belamari (Météo-France)
Dominique Bielli (Météo-France)
Gilles Bourhis (IDRIS)
Pascale Braconnot (IPSL/LSCE)
Christophe Cassou (CERFACS)
Yves Chartier (RPN)
Jalel Chergui (IDRIS)
Philippe Courtier (Météo-France)
Philippe Dandin (Météo-France)
Michel Déqué (Météo-France)
Ralph Doescher (SMHI)
Jean-Louis Dufresne (LMD)
Jean-Marie Epitalon (CERFACS)

1

2 CHAPTER 1. ACKNOWLEDGEMENTS

Laurent Fairhead (LMD)
Marie-Alice Foujols (IPSL)
Gilles Garric (CERFACS)
Eric Guilyardi (CERFACS)
Charles Henriet (CRAY France)
Pierre Herchuelz (ACCRI)
Maurice Imbard (Météo-France)
Luis Kornblueh (MPI-M)
Stephanie Legutke (MPI-M&D)
Claire Lévy (LODYC)
Olivier Marti (IPSL/LSCE)
Claude Mercier (IDRIS)
Pascale Noyret (EDF)
Andrea Piacentini (CERFACS)
Marc Pontaud (Météo-France)
René Redler (NEC-CCRLE)
Tim Stockdale (ECMWF)
Rowan Sutton (UGAMP)
Véronique Taverne (CERFACS)
Jean-Christophe Thil (UKMO)
Nils Wedi (ECMWF)

Chapter 2

Introduction

OASIS3 is the direct evolution of the OASIS coupler developed since more than 10 years at CERFACS
(Toulouse, France). OASIS3 is a portable set of Fortran 77, Fortran 90 and C routines. At run-time, OA-
SIS3 acts as a separate mono process executable, which main function is to interpolate the coupling fields
exchanged between the component models, and as a library linked to the component models, the OA-
SIS3 PRISM Model Interface Library (OASIS3 PSMILe). OASIS3 supports 2D coupling fields only. To
communicate with OASIS3, directly with another model, or to perform I/O actions, a component model
needs to include few specific PSMILe calls. OASIS3 PSMILe supports in particular parallel communica-
tion between a parallel component model and OASIS3 main process based on Message Passing Interface
(MPI) and file I/O using the mpp io library from GFDL. Portability and flexibility are OASIS3 key design
concepts. OASIS3 has been extensively used in the PRISM demonstration runs and is currently used by
approximately 15 climate modelling groups in Europe, USA, Canada, Australia, India and Brasil. The
current OASIS3 version and its toy coupled model TOYCLIM were compiled and run on NEC SX6, IBM
Power4 and Linux PC cluster, and previous OASIS3 versions were run on many other platforms.

2.1 Step-by-step use of OASIS3

To use OASIS3 for coupling models and/or perform I/O actions, one has to follow these steps:
1. Obtain OASIS3 sources. (See chapter 3).
2. Identify the coupling or I/O fields and adapt the component models to allow their exchange with the

PSMILe library based on MPI1 or MPI2 message passing1 . The PSMILe library is interfaced with
the mpp io library from GFDL (2) and therefore can be used to perform I/O actions from/to disk
files. For more detail on how to interface a model with the PSMILe, see chapter 4.
The TOYCLIM coupled model gives a practical example of a coupled model; the sources are given
in directories /prism/src/mod/ to yat m, /toyoce, /toyche ; more detail on TOYCLIM
and how to compile and run it can be found in chapter 8.

3. Define all coupling and I/O parameters and the transformations required to adapt each coupling field
from its source model grid to its target model grid; prepare OASIS3 configuring file namcouple (See
chapter 5). OASIS3 supports different interpolation algorithms as is described in chapter 6.

4. Generate required auxiliary data files. (See chapter 7).
5. Compile OASIS3, the component models and start the coupled experiment. Chapter 8 describes

how to compile and run OASIS3 and the TOYCLIM coupled model.
The appendix D lists (some of) the coupled models realized with OASIS within the past 5 years or so.
If you need extra help, do not hesitate to contact us (see contact details on the back of the cover page).

1The SIPC, PIPE and GMEM communication techniques available in previous versions should still work but are not main-
tained anymore and were not tested.

3

Chapter 3

The OASIS3 sources

The sources and data of OASIS3, all related libraries, and TOYCLIM coupled model are available from
CERFACS CVS server alter and from CERFACS anonymous ftp.
The CVS repository is /home/oasis/PRI SMC VS . To obtain the CVS login and password as well as
the most recent OASIS3 tag, please contact us (see contact details on the back of the cover page).
Note that OASIS3 is temporarily released without the corresponding PRISM Standard Compile Envi-
ronment and Running Environment (SCE/SRE); they will be included when the migration from CVS to
Subversion will be realized at CERFACS.
OASIS3 directory structure follows the PRISM standard one:

- prism/data/tes ti nt er p data and results for OASIS3 in mode NONE
/toyclim data and results for TOYCLIM coupled model

- prism/src/lib/ an ai sg GAUSSIAN interpolation library
/anaism SURFMESH interpolation library
/clim CLIM/MPI1-MPI2 communication library
/fscint INTERP interpolation library
/mpp_io I/O library
/NAG_dummies Dummy library for NAG compiler
/psmile PRISM System Model Interface Library
/scrip SCRIPR interpolation library

- prism/src/mod/ oa si s3 /sr c OASIS3 main code
/doc OASIS3 documentation
/util Utilities to compile OASIS3

/toyatm TOYCLIM component model 1
/toyoce TOYCLIM component model 2
/toyche TOYCLIM component model 3

- prism/util/run ni ng /t est in te rp environment to test OASIS3 interpolation
/testNONE (interpolator-o nl y mode NONE)
/toyclim environment to run the TOYCLIM toymodel

4

Chapter 4

Interfacing a model with the PSMILe
library

At run-time, OASIS3 acts as a separate mono process executable which drives the coupled run, interpolates
and transforms the coupling fields. To communicate with OASIS3 or directly between the component
models, different communication techniques have been historically developed. The technique used for
one particular run is defined by the user in the configuration file namcouple (see section 5). In OASIS3,
the CLIM communication technique based on MPI1 or MPI2 message passing and the associated model
interface library PSMILe, should be used1. For a practical toy model using the PSMILe library, see the
sources in /prism/src/mod /t oya tm , /toyche, /toyoce and more details in chapter 8.
To communicate with OASIS3 or directly with another component model using the CLIM-MPI1/2 com-
munication technique, or to perform I/O actions, a component model needs to be interfaced with the
PRISM System Model Interface library, PSMILe, which sources can be found in prism/src/lib/p sm il e
directory. PSMILe supports:

• parallel communication between a parallel component model and OASIS3 main process,
• direct communication between two parallel component models when no transformations and no

repartitioning are required,
• automatic sending and receiving actions at appropriate times following user’s choice indicated in

the namcouple,
• time integration or accumulation of the coupling fields,
• I/O actions from/to files.

To adapt a component model to PSMILe, specific calls of the following classes have to be implemented
in the code:

1. Initialisation (section 4.1)
2. Grid data file definition (section 4.2)
3. Partition definition (section 4.3)
4. I/O-coupling field declaration (section 4.4)
5. End of definition phase (section 4.5)
6. I/O-coupling field sending and receiving (section 4.6)
7. Termination (section 4.7)

Finally, in section 4.8, different coupling algorithms are illustrated, and explanations are given on how to
reproduce them with PSMILe by defining the appropriate indices of lag and sequence for each coupling
field.

1The SIPC, PIPE and GMEM communication techniques available in previous versions should still work but are not main-
tained anymore and were not tested.

5

6 CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

4.1 Initialisation

All processes of the component model initialise the coupling and, if required, retrieve a local communica-
tor for the component model internal parallelisation.

• USE mod prism proto

Module to be used by the component models.
• CALL prism init comp proto (compid, model name, ierror)

– compid [INTEGER; OUT] : component model ID
– model name [CHARACTER*6; IN] : name of calling model (as in namcouple)
– ierror [INTEGER; OUT] : returned error code.

Routine called by all component model processes, which initialises the coupling.2

• CALL prism get localcomm proto (local comm, ierror)

– local comm [INTEGER; OUT] : value of local communicator
– ierror [INTEGER; OUT] : returned error code.

For CLIM-MPI1 communication technique: routine called by all model processes to get the value
of a local communicator to be used by the model for its internal parallelisation.
In fact, with CLIM-MPI1, all component models started in a pseudo-MPMD mode share automati-
cally the same MPI COMM WORLD communicator. Another communicator has to be used for the
internal parallelisation of each model. OASIS3 creates this model local communicator following a
“coloring scheme”; its value is returned as the first argument of prism get localcomm proto routine.
With CLIM-MPI2, the communicator MPI COMM WORLD will be returned as local communica-
tor.
Besides that, the differences between using PSMILe with MPI1 or MPI2 message passing are

– The $CHANNEL in the namcouple; see section 5.2.
– The way the models are started. With MPI2, only OASIS3 needs to be started at the command

line; it will then spawn the component models at the beginning of the run. With MPI1, models
have to be started by the user in a pseudo-MPMD mode; the way to do this depends on the
computing platform. For more details, see section ??.

4.2 Grid data file definition

The grid data files grids.nc, masks.nc and areas.nc must be created by the user before the run or can be
written directly at run time by the master process of each component model.
If written by the component models, the writing of those grid files is driven by OASIS3 main process. It
first checks whether the binary file grids or the netCDF file grids.nc exists (in that case, it is assumed that
areas or areas.nc and masks or masks.nc files exist too), or if writing is needed. If grids or grids.nc exists,
it must contain all grid information from all models; if it does not exist, each model must write its grid
definition in the grid data files.
The coupler sends the information on whether or not writing is needed to the models following an OA-
SIS internal order (below prism start grids writing). If no writing is needed, nothing happens when
calling the following prism write xxxx routines. If writing is needed, the first model creates the files,
writes the data arrays (with prism write grid , prism write corner , prism write mask ,
prism write area calls), and then sends a termination flag to the coupler (below

2The model may call MPI Init explicitly, but if so, has to call it before calling prism init comp proto ; in this case, the
model also has to call MPI Finalize explicitly, but only after calling prism terminate proto .

4.2. GRID DATA FILE DEFINITION 7

prism terminate grids writing call). The coupler will send the starting flag to the next model;
this ensures that only one model accesses the files at a time.
This section describes the PSMILe routines that may be called by the master process of each component
model to write, at run time, the whole grid information to the grid data files. These routines have to be
called just after prism init comp proto .
The TOYCLIM coupled model uses those routines to write its grid data files if gridswr=1 in the running
script run toyclim (see section ??).

• USE mod prism grids writing

Module to be used by the component model to call grid writing routines.
• CALL prism start grids writing (flag)

– flag [INTEGER; OUT] : returns 1/0 if grids writing is needed/not needed

Initialisation of grids writing.
• CALL prism write grid (cgrid, nx, ny, lon, lat)

– cgrid [CHARACTER*4; IN] : grid name prefix (see 5.3
– nx [INTEGER; IN] : grid dimension in x-direction
– ny [INTEGER; IN] : grid dimension in y-direction
– lon [REAL, DIMENSION(nx,ny); IN) : array of longitudes (degrees East)
– lat [REAL, DIMENSION(nx,ny); IN) : array of latitudes (degrees North)

Writing of the model grid longitudes and latitudes. Longitudes must be given in degrees East in
the interval -360.0 to 720.0. Latitudes must be given in degrees North in the interval -90.0 to 90.0.
Note that if some grid points overlap, it is recommended to define those points with the same number
(e.g. 90.0 for both, not 450.0 for one and 90.0 for the other) to ensure automatic detection of overlap
by OASIS (which is essential to have a correct conservative remapping SCRIPR/CONSERV , see
section 6.4).

• CALL prism write corner (cgrid, nx, ny, nc, clon, clat)

– cgrid [CHARACTER*4; IN] : grid name prefix
– nx [INTEGER; IN] : grid dimension in x-direction
– ny [INTEGER; IN] : grid dimension in y-direction
– nc [INTEGER; IN] : number of corners per grid cell (4)
– lon [REAL, DIMENSION (nx,ny,nc);IN] : array of corner longitudes (in degrees East)
– lat [REAL, DIMENSION (nx,ny,nc);IN] : array of corner latitudes (in degrees North)

Writing of the grid cell corner longitudes and latitudes (counterclockwise sense). Longitudes must
be given in degrees East in the interval -360.0 to 720.0. Latitudes must be given in degrees North
in the interval -90.0 to 90.0. Note also that cells larger than 180.0 degrees in longitude are not sup-
ported. Writing of corners is optional as corner information is needed only for some transformations
(see section 7.2). If called, prism write corners needs to be called after prism write grids.

• CALL prism write mask (cgrid, nx, ny, mask)

– cgrid [CHARACTER*4; IN] : grid name prefix
– nx [INTEGER; IN] : grid dimension in x-direction
– ny [INTEGER; IN] : grid dimension in y-direction
– mask [INTEGER, DIMENSION(nx,ny) ;IN] : mask array (0 - not masked, 1 - masked)

Writing of the model grid mask.
• CALL prism write area (cgrid, nx, ny, area)

– cgrid [CHARACTER*4; IN] : grid name prefix

8 CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

– nx [INTEGER; IN] : grid dimension in x-direction
– ny [INTEGER; IN] : grid dimension in y-direction
– area [REAL, DIMENSION(nx,n y) ; IN] : array of grid cell areas

Writing of the model grid cell areas. Writing of areas is optional as area information is needed only
for some transformations (see section 7.2).

• CALL prism terminate grids writing()

Termination of grids writing. A flag stating that all needed grid information was written will be sent
to OASIS3 main process.

4.3 Partition definition

When a component of the coupled system is a parallel code, each coupling field is usually scattered among
the different processes. With the PSMILe library, each process sends directly its partition to OASIS3 main
process, or directly to the other component model if no transformation nor repartition is required. To do
so, each process implied in the coupling has to define its local partition in the global index space.

• USE mod prism def partition proto

Module to be used by the component model to call prism def partition proto .
• CALL prism def partition proto (il part id, ig paral, ierror)

– il part id [INTEGER; OUT] : partition ID
– ig paral [INTEGER, DIMENSION(:), IN] : vector of integers describing the local

partition in the global index space
– ierror [INTEGER; OUT] : returned error code.

The vector of integers describing the process local partition, ig paral , has a different expression de-
pending on the type of the partition. In OASIS3, 4 types of partition are supported: Serial (no partition),
Apple, Box, and Orange.

4.3.1 Serial (no partition)

This is the choice for a monoprocess model. In this case, we have ig paral(1:3) :
• ig paral(1) = 0 (indicates a Serial “partition”)
• ig paral(2) = 0
• ig paral(3) = the total grid size.

4.3.2 Apple partition

Each partition is a segment of the global domain, described by its global offset and its local size. In this
case, we have ig paral(1:3) :

• ig paral(1) = 1 (indicates an Apple partition)
• ig paral(2) = the segment global offset
• ig paral(3) = the segment local size

Figure 4.1 illustrates an Apple partition over 3 processes.

4.3.3 Box partition

Each partition is a rectangular region of the global domain, described by the global offset of its upper left
corner, and its local extents in the X and Y dimensions. The global extent in the X dimension must also
be given. In this case, we have ig paral(1:5) :

4.3. PARTITION DEFINITION 9

Proc 1:
local offset = 0
local size = 4

Proc 2:
local offset = 4
local size = 6

Proc 3:
local offset = 10
local size = 5

Figure 4.1: Apple partition

10 CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

Proc 1:
local offset = 0
local x extent = 2
local y extent = 2

Proc 2:
local offset = 2
local x extent = 3
local y extent = 2

Proc 3:
local offset = 10
local x extent = 5
local y extent = 1

global x
extent = 5

Figure 4.2: Box partition

• ig paral(1) = 2 (indicates a Box partition)
• ig paral(2) = the upper left corner global offset
• ig paral(3) = the local extent in X
• ig paral(4) = the local extent in Y3

• ig paral(5) = the global extent in X.
Figure 4.2 illustrates a Box partition over 3 processes.

4.3.4 Orange partition

Each partition is an ensemble of segments of the global domain. Each segment is described by its global
offset and its local extent. In this case, we have ig paral(1:N) where N = 2 + 2*number of
segments 4.

• ig paral(1) = 3 (indicates a Orange partition)
• ig paral(2) = the total number of segments for the partition (limited to 200 presently, see note

for ig paral(4) for Box partition above)
• ig paral(3) = the first segment global offset

3The maximum value of the local extent in Y is presently 338; it can be increased by mod-
ifying the value of Clim MaxSegments in prism/src/lib/clim/src/mod clim.F90 and in
prism/src/lib/psmile/src/mod prism proto.F90 and by recompiling Oasis3 and the PSMILe library.

4As for the Box partition, the maximum number of segments is presently 338; it can be increased by modifying the value of
Clim MaxSegments

4.4. I/O-COUPLING FIELD DECLARATION 11

Proc 1: 1st segment offset = 0
nbr of segments = 3 1st segment size = 4

2nd segment offset = 7
2nd segment size = 2
3rd segment offset = 10
3rd segment size = 3

Figure 4.3: Orange partition for one process

• ig paral(4) = the first segment local extent
• ig paral(5) = the second segment global offset
• ig paral(6) = the second segment local extent
• ...
• ig paral(N-1) = the last segment global offset
• ig paral(N) = the last segment local extent

Figure 4.3 illustrates an Orange partition with 3 segments for one process. The other process partitions
are not illustrated.

4.4 I/O-coupling field declaration

Each process implied in the coupling declares each field it will send or receive during the simulation.

• CALL prism def var proto(var id, name, il part id, var nodims, kinout,
var actual shape, var type, ierror)

– var id [INTEGER; OUT] : coupling field ID
– name [CHARACTER*8; IN] : field symbolic name (as in the namcouple)
– il part id [INTEGER; IN] : partition ID (returned by prism def partition proto)
– var nodims [INTEGER, DIMENSION(2); IN] : var nodims(1) is the rank of field ar-

ray (1 or 2); var nodims(2) is the number of bundles (always 1 for OASIS3).

12 CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

– kinout [INTEGER; IN] : PRISM In for fields received by the model, or PRISM Out
for fields sent by the model

– var actual shape [INTEGER, DIMENSION(2*var nodims(1)); IN] : vector of
integers giving the minimum and maximum index for each dimension of the coupling field ar-
ray; for OASIS3, the minimum index has to be 1 and the maximum index has to be the extent
of the dimension.

– var type [INTEGER; IN] : type of coupling field array; put PRISM Real for single or
double precision real arrays5 . No automatic conversion is implemented; therefore, all coupling
fields exchanged through OASIS3 main process must be of same type6.

– ierror [INTEGER; OUT] : returned error code.

4.5 End of definition phase

Each process implied in the coupling closes the definition phase.
• CALL prism enddef proto(ierror)

– ierror [INTEGER; OUT]: returned error code.

4.6 Sending and receiving actions

4.6.1 Sending a coupling field

In the model time stepping loop, each process implied in the coupling sends its part of the I/O or coupling
field.

• USE mod prism put proto

Module to be used by the component model to call prism put proto .
• CALL prism put proto(var id, date, field array, info)

– var id [INTEGER; IN] : field ID (from corresponding prism def var proto)
– date [INTEGER; IN] : number of seconds in the run at the beginning of the timestep
– field array [REAL, IN] : I/O or coupling field array
– info [INTEGER; OUT] : returned info code i.e.

∗ PRISM Sent(=4) if the field was sent to another model (directly or via OASIS3 main
process)

∗ PRISM LocTrans (=5) if the field was only used in a time transformation (not sent, not
output)

∗ PRISM ToRest (=6) if the field was written to a restart file only
∗ PRISM Output (=7) if the field was written to an output file only
∗ PRISM SentOut (=8) if the field was both written to an output file and sent to another

model (directly or via OASIS3 main process)
∗ PRISM ToRestOut (=9) if the field was written both to a restart file and to an output file.
∗ PRISM Ok (=0) otherwise and no error occurred.

5PRISM standard is to exchange coupling fields declared REAL(kind=SELECTED REAL KIND(12,307)) . By
default, all real variables are declared as such in OASIS3. To exchange single precision coupling fields, OA-
SIS3 has to be compiled with the pre-compiling key use realtype single, the coupling fields must be declared
REAL(kind=SELECTED REAL KIND(6,37)) in the component models (see also chapter 8).

6Coupling fields exchanged directly between two component models can have a type different from the ones exchanged
through OASIS3 main process, as long as they are single or double precision real arrays in both models.

4.6. SENDING AND RECEIVING ACTIONS 13

This routine may be called by the model at each timestep. The sending is actually performed only if the
time obtained by adding the field lag (see 4.8) to the argument date corresponds to a time at which it
should be activated, given the coupling or I/O period indicated by the user in the namcouple (see section
5). A field will not be sent at all if its coupling or I/O period indicated in the namcouple is greater than the
total run time.
If a local time transformation is indicated for the field by the user in the namcouple (INSTANT, AVER-
AGE, ACCUMUL, T MIN or T MAX, see section 6), it is automatically performed and the resulting field
is finally sent at the coupling or I/O frequency.
For a coupling field with a positive lag (see 4.8), the OASIS3 restart file (see section 7.3) is automatically
written by the last prism put proto call of the run, if its argument date + the field lag corresponds
to a coupling or I/O period. To force the writing of the field in its coupling restart file, one can use
prism put restart proto (see below).
This routine can use the buffered MPI BSend (by default) or the standard blocking send MPI Send (if
NOBSEND is specified in the namcouple -see $CHANNEL section 5.2) to send the coupling fields.

4.6.2 Receiving a coupling field

In the model time stepping loop, each process implied in the coupling receives its part of the I/O-coupling
field.

• USE mod prism get proto

Module to be used by the component model to call prism get proto .
• CALL prism get proto(var id, date, field array, ierror)

– var id [INTEGER; IN] : field ID (from corresponding prism def var proto)
– date [INTEGER; IN] : number of seconds in the run at the beginning of the timestep
– field array [REAL, OUT] : I/O or coupling field array
– info [INTEGER; OUT] : returned info code

∗ PRISM Recvd(=3) if the field was received from another model (directly or via OASIS3
main process)

∗ PRISM FromRest (=10) if the field was read from a restart file only (directly or via OA-
SIS3 main process)

∗ PRISM Input (=11) if the field was read from an input file only
∗ PRISM RecvOut (=12) if the field was both received from another model (directly or via

OASIS3 main process) and written to an output file
∗ PRISM FromRestOut (=13) if the field was both read from a restart file (directly or via

OASIS3 main process) and written to an output file
∗ PRISM Ok (=0) otherwise and no error occurred.

This routine may be called by the model at each timestep. The date argument is automatically analysed
and the receiving action is actually performed only if date corresponds to a time for which it should be
activated, given the period indicated by the user in the namcouple. A field will not be received at all if its
coupling or I/O period indicated in the namcouple is greater than the total run time.

4.6.3 Auxiliary routines

• CALL prism put inquire(var id, date, info)

– var id [INTEGER; IN] : field ID (from corresponding prism def var proto)

14 CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

– date [INTEGER; IN] : number of seconds in the run at the beginning of the timestep
– info [INTEGER; OUT] : returned info code.

This routine may be called at any time to inquire what would happen to the corresponding field (i.e. with
same var id and at same date) below the corresponding prism put proto . The possible value of
the returned info code are as for prism put proto :

• PRISM Sent(=4) if the field would be sent to another model (directly or via OASIS3 main process)
• PRISM LocTrans (=5) if the field would be only used in a time transformation (not sent, not output)
• PRISM ToRest (=6) if the field would be written to a restart file only
• PRISM Output (=7) if the field would be written to an output file only
• PRISM SentOut (=8) if the field would be both written to an output file and sent to another model

(directly or via OASIS3 main process)
• PRISM ToRestOut (=9) if the field would be written both to a restart file and to an output file.
• PRISM Ok (=0) otherwise and no error occurred.

This is useful when the calculation of the corresponding field array is CPU consuming and should
be avoided if the field is not effectively used below the prism put proto .

• CALL prism put restart proto(var id, date, ierror)

– var id [INTEGER; IN] : field ID (from corresponding prism def var proto)
– date [INTEGER; IN] : number of seconds in the run at the beginning of the timestep
– info [INTEGER; OUT] : returned error code (should be PRISM ToRest=6 if the restart

writing was successful)

This routine forces the writing of the field with corresponding var id in its coupling restart file (see
section 7.3). If a time operation is specified for this field, the value of the field as calculated below the last
prism put proto is written. If no time operation is specified, the value of the field transferred to the
last prism put proto is written.

• CALL prism get freq (var id, period, ierror)

– var id [INTEGER; IN] : field ID (from corresponding prism def var proto)
– period [INTEGER; OUT] : period of coupling (in number of seconds)
– ierror [INTEGER; OUT] : returned error code

This routine can be used to retrieve the coupling period of field with corresponding var id , as defined in
the namcouple (see also section 5.3.1).

4.7 Termination

• CALL prism terminate proto(ierror)

– ierror [INTEGER; OUT] : returned error code.
All processes must terminate the coupling by calling prism terminate proto 7 (normal ter-
mination). Oasis will terminate after all processes called prism terminate proto. With MPI2,
the run may be considered finished when Oasis terminates; to avoid problem, place the call to
prism terminate proto at the very end in the component model code.

• CALL prism abort proto(compid, routine name, abort message)

– compid [INTEGER; IN] : component model ID (from prism init comp proto)
– routine name; IN] : name of calling routine

7If the process called MPI Init (before calling prism init comp proto), it must also call MPI Finalize explicitly,
but only after calling prism terminate proto .

4.8. COUPLING ALGORITHMS - SEQ AND LAG CONCEPTS 15

– abort message; IN] : message to be written out.
If a process needs to abort (abnormal termination), it must do so by calling prism abort proto .
This will ensure a proper termination of all processes in the coupled model communicator. This
routine writes the name of the calling model, the name of the calling routine, and the message to the
job standard output (stdout).

4.8 Coupling algorithms - SEQ and LAG concepts

Using PSMILe library, the user has full flexibility to reproduce different coupling algorithms. In the com-
ponent codes, the sending and receiving routines, respectively prism put proto and prism get proto ,
can be called at each model timestep, with the appropriate date argument giving the actual time (at the be-
ginning of the timestep), expressed in “number of seconds since the start of the run”. This date argument
is automatically analysed by the PSMILe and depending on the coupling period, the lag and sequencing
indices (LAG and SEQ), chosen by the user for each coupling field in the configuration file namcouple,
different coupling algorithms can be reproduced without modifying anything in the component model
codes themselves. The lag and sequence concepts and indices are explained in more details here below.
These mechanisms are valid for fields exchanged through OASIS3 main process and for fields exchanged
directly between the component models.

4.8.1 The lag concept

If no lag index or if a lag index equal to 0 is given by the user in the namcouple for a particular coupling
field, the sending or receiving actions will actually be performed, below the prism put proto called
in the source model or below the prism get proto called in the target model respectively, each time
the date arguments on both sides match an integer number of coupling periods.

To match a prism put proto called by the source model at a particular date with a prism get proto
called by the target model at a different date, the user has to define in the namcouple an appropriate lag in-
dex, LAG, for the coupling field(see section 5). The value of the LAG index must be expressed in “number
of seconds”; its value is automatically added to the prism put proto date value and the sending action
is effectively performed when the sum of the date and the lag matches an integer number of coupling peri-
ods. This sending action is automatically matched, on the target side, with the receiving action performed
when the prism get proto date argument equals the same integer number of coupling periods.

1. LAG concept first example
A first coupling algorithm, exploiting the LAG concept, is illustrated on figure 4.4.
On the 4 figures in this section, short black arrows correspond to prism put proto or
prism get proto called in the component model that do not lead to any sending or receiv-
ing action; long black arrows correspond to prism put proto or prism get proto called
in the component models that do effectively lead to a sending or receiving action; long red arrows
correspond to prism put proto or prism get proto called in the component models that
lead to a reading or writing of the coupling field from or to a coupling restart file (either directly or
through OASIS3 main process).
During a coupling timestep, model A receives F2 and then sends F1; its timestep length is 4. During
a coupling timestep, model B receives F1 and then sends F2; its timestep length is 6. F1 and F2

coupling periods are respectively 12 and 24. If F1/F2 sending action by model A/B was used at a
coupling timestep to match the model B/A receiving action, a deadlock would occur as both models
would be initially waiting on a receiving action. To prevent this, F1 and F2 produced at the timestep
before have to be used to match respectively the model B and model A receiving actions.

16 CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

F1

F2

F1 F2

F2 F1
F1

F2 F2 F2 F2 F2 F2F1 F1F1 F1 F1 F1 F1

F2 F2
F2F2

F2
F1

F2

F1 F1

0

0 12

12

24

24 120

120

6

4 8 16 20 28

18 30

Model A timestep = 4

Model B timestep = 6

Cpl_period(F1) = 12
Cpl_period(F2) = 24
LAG(F1) = 4
LAG(F2) = 6

prism_put_proto/prism_get_proto leading to
writing/reading to/from coupling restart file

prism_put_proto/prism_get_proto not leading to
sending/receiving actions

prism_put_proto/prism_get_proto leading to
sending/receiving actions

Figure 4.4: LAG concept first example

4.8. COUPLING ALGORITHMS - SEQ AND LAG CONCEPTS 17

F1

F2

F2
F1

F1

F2F1 F1 F1

F2 F2
F2F2 F1

F2

F1 F1

0

0 12

12

24

24 120

120

6 18 30

prism_put_proto/prism_get_proto leading to
writing/reading to/from coupling restart file

prism_put_proto/prism_get_proto NOT leading to
sending/receiving actions

prism_put_proto/prism_get_proto leading to
sending/receiving actions

Model A timestep = 6

Model B timestep = 6

Cpl_period(F1) = 12
Cpl_period(F2) = 12
Cpl_period(F3) = 12
LAG(F1) = 6
LAG(F2) = 6
LAG(F3) = 0

F1 F2

6
F1 F2

18
F2

F2

F3

F3

F3

F3 F3 F3

F3 F3F3 F3

F3F3

Figure 4.5: LAG concept second example

This implies that a lag of respectively 4 and 6 seconds must be defined for F1 and F2. For F1,
the prism put proto performed at time 8 and 20 by model A will then lead to sending ac-
tions (as 8 + 4 = 12 and 20 + 4 = 24 which are coupling periods) that match the receiving ac-
tions performed at times 12 and 24 below the prism get proto called by model B. For F2, the
prism put proto performed at time 18 by model B then leads to a sending action (as 18 + 6
= 24 which is a coupling period) that matches the receiving action performed at time 24 below the
prism get proto called by model A.
At the beginning of the run, as their LAG index is greater than 0, the first prism get proto will
automatically lead to reading F1 and F2 from their coupling restart files. The user therefore have
to create those coupling restart files for the first run in the experiment. At the end of the run, F1

having a lag greater than 0, is automatically written to its coupling restart file below the last F1

prism put proto if the date + F1 lag equals a coupling time. The analogue is true for F2.
These values will automatically be read in at the beginning of the next run below the respective
prism get proto .

2. LAG concept second example
A second coupling algorithm exploiting the LAG concept is illustrated on figure 4.5. During its
timestep, model A receives F2, sends F3 and then F1; its timestep length is 6. During its timestep,
model B receives F1, receives F3 and then sends F2; its timestep length is also 6. F1, F2 and F3

coupling periods are both supposed to be equal to 12.
For F1 and F2 the situation is similar to the first example. If F1/F2 sending action by model A/B
was used at a coupling timestep to match the model B/A receiving action, a deadlock would occur

18 CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

as both models would be waiting on a receiving action. To prevent this, F1 and F2 produced at the
timestep before have to be used to match the model A and model B receiving actions, which means
that a lag of 6 must be defined for both F1 and F2. For both coupling fields, the prism put proto
performed at times 6 and 18 by the source model then lead to sending actions (as 6 + 6 = 12 and 18
+ 6 = 24 which are coupling periods) that match the receiving action performed at time 12 and 24
below the prism get proto called by the target model.
For F3, sent by model A and received by model B, no lag needs to be defined: the coupling field
produced by model A at the coupling timestep can be “consumed” by model B without causing a
deadlock situation.
As in the first example, the prism get proto performed at the beginning of the run for F1

and F2, automatically read them from their coupling restart files, and the last prism put proto
performed at the end of the run automatically write them to their coupling restart file. For F3, no
coupling restart file is needed nor used as at each coupling period the coupling field produced by
model A can be directly “consumed” by model B.
We see here how the introduction of appropriate LAG indices results in receiving, below the
prism get proto in the target model, coupling fields produced, below the prism put proto
by the source model, the timestep before; this is, in some coupling configurations, essential to avoid
deadlock situations.

4.8.2 The sequence concept

To exchange the coupling fields going through OASIS3 main process (i.e. with status EXPORTED, AUX-
ILARY, or EXPOUT, see section 5), in a given order at each coupling timestep, a sequence index SEQ
must be defined for each of them. This is not required for I/O fields or for coupling fields exchanged
directly between the component models, i.e. with status IGNOUT, INPUT or OUTPUT. SEQ gives the
position of the coupling field in the sequence.
A coupling algorithm, showing the SEQ concept, is illustrated on figure 4.6. All coupling field produced
by the source model at the coupling timestep can be “consumed” by the target model at the same timestep
without causing any deadlock situation; therefore, LAG = 0 for all coupling fields. However, at each
coupling timestep, a particular order of exchange must be respected; F1 must be received by model A
before it can send F2, which in turn must be received by model B before it can send F3. Therefore, SEQ
= 1, 2, 3 must be defined respectively for F1, F2 and F3. As all fields can be consumed at the time they
are produced (LAG=0 for all fields), there no reading/writing from/to coupling restart files.

4.8.3 A mix of lag and sequence: the sequential coupled model

One can run the same component models simultaneously or sequentially by defining the appropriate LAG
and SEQ indices. In the example illustrated on figure 4.7, the models perform their prism put proto
and prism get proto calls exactly as in the first lag example above: model A receives F2 and then
sends F1; its timestep length is 4. During a coupling timestep, model B receives F1 and then sends F2; its
timestep length is 6. F1 and F2 coupling periods are both 12. By defining a LAG index of -8 for F1, the
models will now run sequentially.
As the LAG for F2 is positive (6), a reading of F2 in its coupling restart file is automatically performed
below the initial prism get proto . As the LAG for F1 is negative (-8), no reading from file is per-
formed initially and model B waits; at time 8, a sending action is effectively performed below model
A F1 prism put proto (as 8 + LAG (-8) = 0 which is the first coupling timestep) and matches the
initial model B F1 prism get proto . Below the last model A F1 prism put proto of the run
at time 116, a sending action is effectively performed, as 116 + LAG(−8) = 108 is a coupling pe-
riod (as the LAG is negative, the field is not written to its coupling restart file). Below the last model

4.8. COUPLING ALGORITHMS - SEQ AND LAG CONCEPTS 19

F1

0 12 24 120
prism_put_proto/prism_get_proto leading to
sending/receiving actions

Model A timestep = 6

Cpl_period(F1) = 12 LAG(F1) = 0 SEQ(F1) = 1
Cpl_period(F2) = 12 LAG(F2) = 0 SEQ(F2) = 2
Cpl_period(F3) = 12 LAG(F3) = 0 SEQ(F3) = 3

6 18
F2 F3 F1 F2 F3 F2 F3 F2 F3F1 F1

F1

0 12 24 1206 18 30
Model B timestep = 6

F2

F1 F2 F3

F3

F1 F2 F3 F1 F2 F3

F1 F2 F3

F1 F2 F3 F1 F2 F3

prism_put_proto/prism_get_proto NOT
leading to sending/receiving actions

OASIS3 main process

Figure 4.6: The SEQ concept

20 CHAPTER 4. INTERFACING A MODEL WITH THE PSMILE LIBRARY

F2

F1 F2 F2 F1F1

0 124 8
Model A timestep = 4

Model B timestep = 6

Cpl_period(F1) = 12
Cpl_period(F2) = 12
LAG(F1) = -8
LAG(F2) = 6
SEQ(F1) = 2
SEQ(F2) = 1

prism_put_proto/prism_get_proto leading to
writing/reading to/from coupling restart file

prism_put_proto/prism_get_proto not leading to
sending/receiving actions

prism_put_proto/prism_get_proto leading to
sending/receiving actions

F1 F2 F1 F2

0 126

120
F2 F1

116

F2

F1

12 16

F1 F2 F1 F2

108 120114

Figure 4.7: Mix of LAF and SEQ concepts

4.8. COUPLING ALGORITHMS - SEQ AND LAG CONCEPTS 21

prism_put_proto/prism_get_proto leading
to writing/reading to/from restart file

prism_put_proto/prism_get_proto leading
to sending/receiving actions

prism_put_proto/prism_get_proto not
leading to sending/receiving actions

prism_put_restart leading to writing to
coupling restart file

First run:
LAG(F1) = -8
LAG(F2) = 6
SEQ(F1) = 2
SEQ(F2) = 1

F2

F1 F2 F1

0 124 8

F1 F2 F1 F2

0 126

120
F2 F1

116

F2

F1

12 16

F1 F2 F1 F2

108 120114

Restart
file F2Restart

file F1

Model B

Model A

Next runs:
LAG(F1) = 4
LAG(F2) = 6
SEQ(F1) = 1
SEQ(F2) = 1

F1

F2

F1 F2

F2 F1
F1

F1

F2

F2

0

0 12

12

F2 F1

F2

120

120

6

4 8 16

18

Model A

Model B

Restart
file F2

Restart
file F1

Figure 4.8: An example using prism put restart proto

B F2 prism put proto of the run at time 114, a writing of F2 to its restart file is performed, as
114 + LAG(6) = 120 is a coupling period and as the LAG is positive.
If the coupling fields are transformed through OASIS3 main process, it is important to indicate a sequence
index. In fact, at each OASIS3 main process coupling timestep, F1 is necessarily treated after F2. There-
fore, SEQ(F1) = 2 and SEQ(F2) = 1.

4.8.4 Mixing sequential and parallel runs using prism put restart proto

In the example illustrated on figure 4.8, the models run sequentially for the first run only and then run
simultaneously. For the first run, the LAG and SEQ indices must be defined as in section 4.8.3. After
the first run, the situation is similar to the one of section 4.8.1, and positive LAG must be defined for
F1 and F2. As their lag is positive, their corresponding first prism get proto will automatically lead
to reading F1 and F2 from coupling restart files. In this case, model A has to write F1 to its restart file
explicitly by calling prism put restart proto (illustrated on the figure by an orange arrow) at the
end of the first run; in fact, F1 lag being then negative, such writing is not automatically done below the
last prism put proto of the first run.

Chapter 5

The OASIS3 configuration file namcouple

The OASIS3 configuration file namcouple contains, below pre-defined keywords, all user’s defined infor-
mation necessary to configure a particular coupled run. The namcouple is a text file with the following
characteristics:

• the keywords used to separate the information can appear in any order;
• the number of blanks between two character strings is non-significant;
• all lines beginning with # are ignored and considered as comments.
• blank lines are not allowed.

The first part of namcouple is devoted to configuration of general parameters such as the number of mod-
els involved in the simulation, the number of fields, the communication technique, etc. The second part
gathers specific information on each coupling or I/O field, e.g. their coupling period, the list of transfor-
mations or interpolations to be performed by OASIS3 and their associated configuring lines (described in
more details in section 6), etc.

In the next sections, a simple namcouple example is given and all configuring parameters are described.
The additional lines containing the different parameters required for each transformation are described in
section 6. An example of a realistic namcouple can be found in directory /prism/util/runn in g
/toyclim/input/ na mc ou pl e .

5.1 An example of a simple namcouple

The following simple namcouple configures a run in which an ocean, an atmosphere and an atmospheric
chemistry models are coupled. The ocean provides only the SOSSTSST field to the atmosphere, which in
return provides the field CONSFTOT to the ocean. One field (COSENHFL) is exchanged directly from
the atmosphere to the atmospheric chemistry, and one field (SOALBEDO) is read from a file by the ocean.

############### ## ## ## ## ### ## ## ## ## ### ## ## ## ## ### ## ## ## ## ### ## ## ## ## ###
First section
#
$SEQMODE

1
#
$CHANNEL

MPI2 NOBSEND
1 1 arg1

22

5.1. AN EXAMPLE OF A SIMPLE NAMCOUPLE 23

3 1 arg2
3 1 arg3

#
$NFIELDS

4
#
$JOBNAME

JOB
#
$NBMODEL

3 ocemod atmmod chemod 55 70 99
#
$RUNTIME

432000
#
$INIDATE

00010101
#
$MODINFO

NOT
#
$NLOGPRT

2
#
$CALTYPE

1
#
############### ## ## ## ## ### ## ## ## ## ### ## ## ## ## ### ## ## ## ## ### ## ## ## ## ###
Second section
#
$STRINGS
#
Field 1
#
SOSSTSST SISUTESU 1 86400 5 sstoc.nc EXPORTED
182 149 128 64 toce atmo LAG=+14400 SEQ=+1
P 2 P 0
LOCTRANS CHECKIN MOZAIC BLASNEW CHECKOUT
#
AVERAGE
INT=1
at31topa 91 2 48
CONSTANT 273.15
INT=1

#
Field 2
#
CONSFTOT SOHEFLDO 6 86400 7 flxat.nc EXPORTED
atmo toce LAG=+14400 SEQ=+1
P 0 P 2
LOCTRANS CHECKIN SCRIPR CHECKOUT

24 CHAPTER 5. THE OASIS3 CONFIGURATION FILE NAMCOUPLE

#
ACCUMUL
INT=1
CONSERV LR SCALAR LATLON 10 FRACAREA FIRST
INT=1

#
Field
#
COSENHFL SOSENHFL 37 86400 1 flda3.nc IGNOUT
atmo atmo LAG=+7200 SEQ=+1
LOCTRANS
AVERAGE
#
Field 4
#
SOALBEDO SOALBEDO 17 86400 0 SOALBEDO.nc INPUT
#
############### ## ## ## ## ### ## ## ## ## ### ## ## ## ## ### ## ## ## ## ### ## ## ## ## ##

5.2 First section of namcouple file

The first section of namcouple uses some predefined keywords prefixed by the $ sign to locate the related
information. The $ sign must be in the second column. The first ten keywords are described hereafter:

• $SEQMODE : On the line below this keyword is the maximum number of fields that have to be, at one
particular coupling timestep, necessarily exchanged sequentially in a given order. For $SEQMODE
≥ 1, the position of each coupling field in the sequence has to be given by its SEQ index (see below
and also section 4.8).

• $CHANNEL : On the line below this keyword is the communication technique chosen. Choices are
MPI1 or MPI2 for the CLIM communication technique and related PSMILe library, using MPI1
or MPI2 message passing. To run OASIS3 as an interpolator only, put NONE (see also section 6.1).
The communication techniques available in previous OASIS version, i.e. SIPC , PIPE , or GMEM
should still work but are not officially supported anymore and were not tested.
To use the CLIM/MPI2 communication technique, the lines below $CHANNEL are, e.g. for 3
models:
$CHANNEL
MPI2 NOBSEND
1 1 arg1
3 1 arg2
3 1 arg3

where MPI2 is the message passing used in CLIM and PSMILe, and NOBSEND indicates that
standard blocking send MPI Send should be used in place of the buffered MPI BSend to send the
coupling fields.1

1Use the standard blocking send MPI Send if the coupling fields are necessarily sent and received in the same order, or on
platforms for which MPI Send is implemented with a mailbox (e.g. VPPs; in this case, make sure that the size of the mailbox
is sufficient). Use the less efficient buffered send MPI BSend on platforms for which MPI Send is not implemented with a
mailbox if the coupling fields are not sent and received in the same order. Note that below the call to prism enddef proto ,
the PSMILe tests whether or not the model has already attached to an MPI buffer. If it is the case, the PSMILe detaches from the
buffer, adds the size of the pre-attached buffer to the size needed for the coupling exchanges, and reattaches to an MPI buffer. The
model own call to MPI Buffer Attach must therefore be done before the call to prism enddef proto . Furthermore, the
model is not allowed to call MPI BSend after the call to prism terminate proto , as the PSMILe definitively detaches

5.2. FIRST SECTION OF NAMCOUPLE FILE 25

If NOBSEND is not specified, the buffered send MPI BSend will be used.
The following lines (one line per model listed on the $NBMODEL line) indicate for each model the
total number of processes, the number of processes implied in the coupling, and possibly launching
arguments. Here the first model runs on one process which is of course implied in the coupling and
the argument passed to the model is ”arg1”; the second and third models run on 3 processes but only
one process is implied in the coupling (i.e. exchanging information with OASIS3 main process),
and the argument passed to the models are respectively “arg2” and “arg3”.
To use the CLIM/MPI1 communication technique, the $CHANNEL lines are are as for MPI2 except
that MPI2 is replaced by MPI1 and there is no launching arguments2 .

• $NFIELDS : On the line below this keyword is the total number of fields exchanged and described
in the second part of the namcouple.

• $JOBNAME : On the line below this keyword is a CHARACTER ?3 or CHARACTER ?4 variable giving
an acronym for the given simulation.

• $NBMODEL : On the line below this keyword is the number of models running in the given ex-
periment followed by CHARACTER ?6 variables giving their names. Then the user may indicate
the maximum Fortran unit number used by the models. In the example, Fortran units above 55,
70, and 99 are free for respectively the ocean, atmosphere, and atmospheric chemistry models. If
no maximum unit numbers are indicated, OASIS3 will suppose that units above 1024 are free. If
$CHANNEL is NONE , $NBMODEL has to be 0 and there should be no model name and no unit
number.

• $RUNTIME : On the line below this keyword is the total simulated time of the run, expressed in
seconds. If $CHANNEL is NONE , $RUNTIME has to be the number of time occurrences of the field
to interpolate from the restart file.

• $INIDATE : On the line below this keyword is the initial date of the run. The format is YYYYMMDD .
This date is important only for the FILLING transformation and for printing information in OASIS3
log file cplout.

• $MODINFO : If coupling restart files are binary files (see section 7.3), the line below this keyword
indicates if a header is encapsulated or not: it can be YES or NOT .

• $NLOGPRT : The line below this keyword refers to the amount of information that will be written
to the OASIS3 log file cplout during the run. With 0, there is practically no output written to the
cplout; with 1, only some general information on the run, the header of the main routines, and the
names of the fields when treated appear in the cplout. Finally, with 2, the full output is generated.

• $CALTYPE : This new keyword gives the type of calendar used. For now, the calendar type is im-
portant only if FILLING analysis is used for a coupling field in the run and for printing information
in OASIS3 log file cplout. Below this keyword, a number (0, 1 or n) must be indicated by the user:

– 0 : a 365 day calendar (no leap year)
– 1 : a 365 or 366 (leap years) day calendar A year is a leap year if it can be divided by 4;

however if it can be divided by 4 and 100, it is not a leap year; furthermore, if it can be divided
by 4, 100 and 400, it is a leap year.

– n : n ≥ 1 day month calendar.

from the MPI buffer in this routine. See the example in the toyatm model in prism/src/mod/toyatm/src
2With MPI1, models have to be started by the user in a pseudo-MPMD mode in the order they are introduced in the nam-

couple. The way to do this depends on the computing platform. With MPI1, OASIS3 main process and the component models
automatically share the same MPI COMM WORLD communicator; in this communicator OASIS3 main process is assumed to
have rank 0 and the other component models are assumed to have ranks in the order of which they are introduced in namcouple.
If this is not the case, a deadlock may occur.

26 CHAPTER 5. THE OASIS3 CONFIGURATION FILE NAMCOUPLE

5.3 Second section of namcouple file

The second part of the namcouple, starting after the keyword $STRINGS , contains coupling information
for each coupling or I/O field. Its format depends on the field status given by the last entry on the field
first line (EXPORTED , IGNOUT or INPUT in the example above). The field status may be the follow-
ing (AUXILARY and EXPORTED are supported by all communication techniques, while the others are
supported only by the PSMILe i.e. the CLIM/MPI1 or CLIM/MPI2 communication technique):

• AUXILARY : sent by the source model, received and used by OASIS3 main process for the transfor-
mation of other fields.

• EXPORTED : exchanged between component models and transformed by OASIS3 main process.
• EXPOUT : exchanged, transformed and also written to two output files, one before the sending action

in the source model below the prism put proto call, and one after the receiving action in the
target model below the prism get proto call.

• IGNORED : exchanged directly between the component models without being transformed by OA-
SIS3 main process. The grid and partitioning of the source and target models have to be identical.

• IGNOUT : exchanged directly between the component models without being transformed by OA-
SIS3 main process and written to two output files, one before the sending action in the source model
below the prism put proto call, and one after the receiving action in the target model below
the prism get proto call. The grid and partitioning of the source and target models have to be
identical.

• INPUT : simply read in from the input file by the target model PSMILe below the prism get proto
call at appropriate times corresponding to the input period indicated by the user in the namcouple.
See section 7.4 for the format of the input file.

• OUTPUT : simply written out to an output file by the source model PSMILe below the prism put proto
call at appropriate times corresponding to the output period indicated by the user in the namcouple.
The name of the output file (one per field) is automatically built based on the field name and initial
date of the run ($INIDATE).

5.3.1 Second section of namcouple for EXPORTED , AUXILARY and EXPOUT fields

The first 3 lines for fields with status EXPORTED , AUXILARY and EXPOUT are as follows:
SOSSTSST SISUTESU 1 86400 5 sstoc.nc sstat.nc EXPORTED
182 149 128 64 toce atmo LAG=+14400 SEQ=+1
P 2 P 0

where the different entries are:
• Field first line:

– SOSSTSST : symbolic name for the field in the source model (CHARACTER*8). It has to
match the argument name of the corresponding field declaration in the source model; see
prism def var proto in section 4.4.

– SISUTESU : symbolic name for the field in the target model (CHARACTER*8). It has to
match the argument name of the corresponding field declaration in the target model; see
prism def var proto in section 4.4.

– 1 : index in auxiliary file cf name table.txt used by OASIS3 and PSMILe to identify corre-
sponding CF standard name and units (see 7.1).

– 86400 : coupling and/or I/O period for the field, in seconds. (If $CHANNEL is NONE , put “1”.)
– 5 : number of transformations to be performed on this field.

5.3. SECOND SECTION OF NAMCOUPLE FILE 27

– sstoc.nc : name of the coupling restart file for the field (CHARACTER*8); it may be a binary
of netCDF file (for more detail, see section 7.3).

– sstat.nc : name of the field output file, may be indicated for NONE (and PIPE) communication
techniques only. It may be a binary of netCDF file (see section 7.3).

– EXPORTED : field status.
• Field second line:

– 182 : number of points for the source grid first dimension (optional if a netCDF coupling
restart file is used).

– 149 : number of points for the source grid second dimension (optional if a netCDF coupling
restart file is used).

– 128 : number of points for the target grid first dimension (optional if a netCDF coupling restart
file is used).

– 64 : number of points for the target grid second dimension (optional if a netCDF coupling
restart file is used).

– toce : prefix of the source grid name in grid data files (see section 7.2) (CHARACTER*4)
– atmo : prefix of the target grid name in grid data files (CHARACTER*4)
– LAG=+14400 : optional lag index for the field expressed in seconds (CLIM/MPI1 or CLIM/MPI2

communication technique only, see section 4.8). Note that in mode NONE a LAG has to be
defined so that the input file is opened initially.

– SEQ=+1 : optional sequence index for the field (CLIM/MPI1 or CLIM/MPI2 communication
technique only, see section 4.8).

• Field third line
– P : source grid first dimension characteristic (‘P’: periodical; ‘R’: regional).
– 2 : source grid first dimension number of overlapping grid points.
– P : target grid first dimension characteristic (‘P’: periodical; ‘R’: regional).
– 0 : target grid first dimension number of overlapping grid points.

The fourth line gives the list of transformations to be performed for this field. There is then one or more
additional configuring lines describing some parameters for each transformation. These additional lines
are described in more details in the section 6.

5.3.2 Second section of namcouple for IGNORED , IGNOUT , and OUTPUT fields

The first 2 lines for fields with status IGNORED or IGNOUT or OUTPUT are as follows:
COSENHFL SOSENHFL 37 86400 1 flda3.nc IGNOUT
atmo toce LAG=+7200 SEQ=+1

entries are as for EXPORTED fields, except that there is no output file name on the first line.
For OUTPUT fields, there is no target model and therefore no target symbolic name; the source symbolic
name must be repeated twice on the field first line. Also, there is no coupling restart file name (flda3.nc
here), no LAG index and no SEQ index.
For IGNORED fields, the name used in the coupling restart file (if any) must be the target symbolic name.

The third line is LOCTRANS if this transformation is chosen for the field. Note that LOCTRANS is the
only transformation supported for IGNORED , IGNOUT and OUTPUT fields (as it is performed directly in
the PSMILe below the prism put proto call). If LOCTRANS is chosen, a fourth line giving the name
of the time transformation is required. For more detail on LOCTRANS , see section 6.2.

28 CHAPTER 5. THE OASIS3 CONFIGURATION FILE NAMCOUPLE

5.3.3 Second section of namcouple for INPUT fields

The first and only line for fields with status INPUT is:

SOALBEDO SOALBEDO 17 86400 0 SOALBEDO.nc INPUT

• SOALBEDO : symbolic name for the field in the target model (CHARACTER*8 repeated twice)
• 17: index in auxiliary file cf name table.txt (see above for EXPORTED fields)
• 86400: input period in seconds
• 0: number of transformations (always 0 for INPUT fields)
• SOALBEDO.nc : CHARACTER*32 giving the input file name (for more detail on its format, see

section 7.4)
• INPUT : field status.

Chapter 6

The transformations and interpolations in
OASIS3

Different transformations and 2D interpolations are available in OASIS3 to adapt the coupling fields from
a source model grid to a target model grid. They are divided into five general classes that have precedence
one over the other in the following order: time transformation (with CLIM/MPI1-MPI2 and PSMILe
only), pre-processing, interpolation, “cooking”, and post-processing. This order of precedence is concep-
tually logical, but is also constrained by the OASIS3 software internal structure.
In the following paragraphs, it is first described how to use OASIS3 in an interpolator-only mode. Then a
description of each transformation with its corresponding configuring lines is given.

6.1 Using OASIS3 in the interpolator-only mode

OASIS3 can be used in an interpolator-only mode, in which case it transforms fields without running any
model. It is recommended to use first OASIS3 in this mode to test different transformations and interpola-
tions without having to run the whole coupled system. In the interpolator-only mode, all transformations,
except the time transformations, are available.
To run OASIS3 in an interpolator-only mode, the user has to prepare the namcouple as indicated in sections
5.2 and 5.3. In particular, NONE has to be chosen below the keyword $CHANNEL ; “0” (without any model
name and Fortran unit number) must be given below the keyword $NBMODEL ; $RUNTIME has to be the
number of time occurrences of the field to interpolate from the NetCDF input file1; finally, the “coupling”
period of the field (4th entry on the field first line) must be always “1”. Note that if $RUNTIME is
smaller than the total number of time ocurrences in the input file, the first $RUNTIME occurrences will be
interpolated.
The name of the input file which contains the fields to interpolate is given by the 6th entry on the field first
line (see 5.3). After their transformation, OASIS3 writes them to their output file which name is the 7th
entry on the first line. Note that all fields have to be present in the same restart file.
The time variable in the input file, if any, is recognized by the its attribute ”units”. The acceptable units
for time are listed in the udunits.dat file (3). This follows the CF convention.
To compile OASIS3 in interpolator-only mode, see section 8.1.1. Practical examples on how to use OA-
SIS3 in a interpolator-only mode are given in prism/util/runn in g/ to ymo de l/ te st int er p
(see also section 8.3.1) and prism/util/runn ing /t oy mo de l/t es tN ON E (see also section 8.3.2)
The configuring parameters that have to be defined in the namcouple for each transformation in the
interpolator-only mode or in the coupling mode are described here after.

1For binary input file, only one time occurence may be interpolated

29

30 CHAPTER 6. THE TRANSFORMATIONS AND INTERPOLATIONS IN OASIS3

6.2 The time transformations

LOCTRANS can be chosen as first transformation if CLIM/MPI1-MPI2 communication and the PSMILe
interface are used. LOCTRANS requires one configuring line on which a time transformation, automati-
cally performed below the call to PSMILe prism put proto , should be indicated:

• INSTANT : no time transformation, the instantaneous field is transferred;
• ACCUMUL : the field accumulated over the previous coupling period is transferred;
• AVERAGE : the field averaged over the previous coupling period is transferred;
• T MIN : the minimum value of the field for each source grid point over the previous coupling period

is transferred;
• T MAX : the maximum value of the field for each source grid point over the previous coupling period

is transferred;
• ONCE: only one prism put proto or prism get proto will be performed; this is equivalent

to giving the length of the run as coupling or I/O period.

6.3 The pre-processing transformations

The following transformations are available in the pre-processing part of OASIS3, controlled by preproc.f .

• REDGLO

This transformation is obsolete in the current OASIS version as interpolations for Gaussian Reduced
grid now exist; this transformation should not be used anymore.

REDGLO (routine redglo.f) performs the interpolation from a Reduced grid to a Gaussian one.
The interpolation is linear and performed latitude circle per latitude circle. When present, REDGLO
must be the first pre-processing transformation performed. The configuring line is as follows:
REDGLO operation

$NNBRLAT $CDMSK

where xxx is half the number of latitude circles of the Gaussian grid. For example, for a T42
with 64 latitude circles, $NNBRLAT is “NO32”. In the current version, it can be either NO16,
NO24, NO32, NO48, NO80, NO160.$CDMSK is a flag indicating if non-masked values have to
be extended to masked areas before interpolation ($CDMSK = SEALAND) using the Reduced grid
mask (see section 7.2) or if the opposite has to be performed ($CDMSK = LANDSEA). If $CDMSK
= NOEXTRAP , then no extrapolation is performed.

• INVERT:
This transformation is obsolete in the current OASIS version and should be used anymore.

INVERT (routine invert.f) reorders a field so that it goes from south to north and from west to
east (the first point will be the southern and western most one; then it goes parallel by parallel going
from south to north). Note that INVERT does not transform the associated grid or mask. INVERT
should be used only for fields associated to A, B, G, L, Z, or Y grids (see annexe A) but produced
by the source model from North to South and/or from East to West. INVERT does not work for
Reduced (’D’) or unstructured (’U’) grids (see annexe A).
The generic input line is as follows:
INVERT operation

$CORLAT $CORLON

$CORLAT = NORSUD or SUDNOR and $CORLON = ESTWST or WSTEST describes the orien-
tation of the source field in longitude and latitude, respectively.

• MASK:

6.3. THE PRE-PROCESSING TRANSFORMATIONS 31

MASK (routine masq.f) is used before the analysis EXTRAP . A given REAL value VALMASK is
assigned to all masked points following the source grid mask (see section 7.2), so they can be
detected by EXTRAP .
The generic input line is as follows:
MASK operation

$VALMASK

approaches the maximum value that your computing platform can represent; choose a value well
outside the range of your field values but not too large.

• EXTRAP:
EXTRAP (routine extrap.f) performs the extrapolation of a field over its masked points. The
analysis MASK must be used just before, so that EXTRAP can identify masked points. Note that
EXTRAP does not work for Reduced (’D’) or unstructured (’U’) grids (see appendix A).
Two methods of extrapolation are available. With NINENN , a N-nearest-neighbour method is used.
The procedure is iterative and the set of remaining masked points evolves at each iteration. The
configuring line is:
EXTRAP operation for $CMETH = NINENN

$CMETH $NV $NIO $NID

$CMETH = NINENN ; $NV is the minimum number of neighbours required to perform the extrap-
olation (with a maximum of 4)2; $NIO is the flag that indicates if the weight-address-and-iteration-
number dataset will be calculated and written by OASIS3 ($NIO = 1), or only read ($NIO = 0) in
file nweights (see section 7.5); $NID is the identificator for the weight-address-iteration-number
dataset in all the different EXTRAP/NINENN datasets in the present coupling.3

With $CMETH = WEIGHT , an N-weighted-neighbour extrapolation is performed. In that case, the
user has to build the grid-mapping file, giving for each target grid point the weights and addresses
of the source grid points used in the extrapolation; the structure of this file has to follow the OASIS3
generic structure for transformation auxiliary data files (see section 7.5).
The configuring line is:
EXTRAP operation for $CMETH = WEIGHT

$CMETH $NV $CFILE $NUMLU $NID

$CMETH = WEIGHT ; $NV is the maximum number of neighbours required by the extrapolation
operation; $CFILE and $NUMLU are the grid-mapping file name and associated logical unit; $NID
is the identificator for the relevant grid-mapping dataset in all different EXTRAP/WEIGHT transfor-
mations in the present coupling.

• CHECKIN:
CHECKIN (routine chkfld.f) calculates the mean and extremum values of the source field and
prints them to the coupler log file cplout.
The generic input line is as follows:
CHECKIN operation

$NINT

$NINT = 1 or 0, depending on whether or not the source field integral is also calculated and printed.
• CORRECT:
CORRECT (routine correct.f) reads external fields from binary files and uses them to modify
the coupling field. This transformation can be used, for example, to perform flux correction on the
field.

2For some grids, the extrapolation may not converge if $NV is too large.
3An EXTRAP/NINENN analysis is automatically performed within GLORED analysis but the corresponding datasets have to

be distinct; this is automatically checked by OASIS3 at the beginning of the run.

32 CHAPTER 6. THE TRANSFORMATIONS AND INTERPOLATIONS IN OASIS3

This transformation requires at least one configuration line with two parameters:
CORRECT operation

$XMULT $NBFIELDS

$XMULT is the multiplicative coefficient of the current field, and $NBFIELDS the number of addi-
tional fields to be combined with the current field. For each additional field, an additional configur-
ing line is required:
nbfields lines

$CLOC $AMULT $CFILE $NUMLU

$CLOC and $AMULT , $CFILE and $NUMLU are respectively the symbolic name, the multiplicative
coefficient, the file name and the associated logical unit on which the additional field is going to be
read. The structure of the file has to follow the structure of OASIS3 binary coupling restart files
(see section 7.3).

6.4 The interpolation

The following interpolations, controlled by interp.f , are available in OASIS3.

• BLASOLD:
BLASOLD (routine blasold.f) performs a linear combination of the current coupling field with
other coupling fields or with a constant before the interpolation per se.
This transformation requires at least one configuring line with two parameters:
BLASOLD operation

$XMULT $NBFIELDS

$XMULT is the multiplicative coefficient of the current field, and $NBFIELDS the number of addi-
tional fields to be combined with the current field. For each additional field, an additional input line
is required:
nbfields lines

$CNAME $AMULT

where $CNAME and $AMULT are the symbolic name and the multiplicative coefficient for the ad-
ditional field. To add a constant value to the original field, put $XMULT = 1, $NBFIELDS = 1,
$CNAME = CONSTANT , $AMULT = value to add.

• SCRIPR:
SCRIPR gathers the interpolation techniques offered by Los Alamos National Laboratory SCRIP
1.4 library4(1). SCRIPR routines are in prism/src/lib/ scr ip . See the SCRIP 1.4 documen-
tation in prism/src/mod/ oa si s3/ do c/ SC RI Pus er s. pd f for more details on the interpo-
lation algorithms. Linking with NetCDF library is mandatory when using SCRIPR interpolations.
The following types of interpolations are available:

– DISTWGT performs a distance weighted nearest-neighbour interpolation (N neighbours). All
grid types are supported.
Masked target grid points: no values are calculated for masked target grid points.
Non-masked target grid points: if the N nearest neighbours of a non-masked target grid point
are masked, no value is calculated for that target point (note that transformations MASK and
EXTRAP can be used to avoid this situation); the value 1.0E+20 is assigned to that non-masked
target grid point if prism/src/lib/s cr ip /s rc /sc ri pr mp .f or vector.F90 (for
vector interpolation) are compiled with ll weightot=.true. .
The configuring line is:

4See the copyright statement in appendix C.2.

6.4. THE INTERPOLATION 33

SCRIPR/DISWGT
$CMETH $CGRS $CFTYP $REST $NBIN $NV $ASSCMP $PROJCART

∗ $CMETH = DISTWGT .
∗ $CGRS is the source grid type (LR , D or U)- see annexe A.
∗ $CFTYP is the field type: SCALAR if the field is a scalar one, or VECTOR I or VECTOR J

whether the field represents respectively the first or the second component of a vector field
(see paragraph Support of vector fields below). Note that VECTOR , which is fact leads
to a scalar treatment of the field (as in the previous versions), is still supported.

∗ $REST is the search restriction type: LATLON or LATITUDE (see SCRIP 1.4 documen-
tation). Note that for D or U grid, the restriction may influence sligthly the result near the
borders of the restriction bins.

∗ $NBIN the number of restriction bins (see SCRIP 1.4 documentation).
∗ $NV is the number of neighbours used.
∗ $ASSCMP : optional, for VECTOR I or VECTOR J vector fields only; the source symbolic

name of the associated vector component.
∗ $PROJCART : optional, for vector fields only; should be PROJCART if the user wants the

vector components to be projected in a Cartesian coordinate system before interpolation
(see paragraph Support of vector fields below).

– GAUSWGT performs a N nearest-neighbour interpolation weighted by their distance and a
gaussian function. All grid types are supported.
Masked target grid points: no values are calculated for masked target grid points.
Non-masked target grid points: if the N nearest neighbours of a non-masked target grid point
are masked, no value is calculated for that target point, except that if prism/src/lib/
scrip/src/remap gauswgt.f is compiled with ll nnei=.true. , in which case the
non-masked nearest neighbour is used. As for DISTWGT , the value 1.0E+20 is assigned to
non-masked target grid points for which no value is calculated if prism/src/lib/ scr ip /
src/scriprmp.f or vector.F90 (for vector interpolation) are compiled with
ll weightot=.true. .
The configuring line is:
SCRIPR/GAUSWGT

$CMETH $CGRS $CFTYP $REST $NBIN $NV $VAR $ASSCMP $PROJCART

∗ $CMETH = GAUSWGT

∗ $VAR , which must be given as a REAL value (e.g 2.0 and not 2), defines the weight given
to a neighbour source grid point as inversely proportional to exp(−1/2 · d2/σ2) where
d is the distance between the source and target grid points, and σ2 = $V AR · d

2 where
d

2 is the average distance between two source grid points (calculated automatically by
OASIS3).

– BILINEAR performs bilinear interpolation.
– BICUBIC performs a bicubic interpolation.

For BILINEAR and BICUBIC , Logically-Rectangular (LR) and Reduced (D) source grid
types are supported.
Masked target grid points: no values are calculated for masked target grid points.
Non-masked target grid points: if the some of the source grid points normally used in the
bilinear or bicubic interpolation are masked, another algorithm is applied; at least, the nearest
non-masked source neighbour is used.
The configuring line is:

SCRIPR/BILINEA R or SCRIPR/BICUBIC

34 CHAPTER 6. THE TRANSFORMATIONS AND INTERPOLATIONS IN OASIS3

$CMETH $CGRS $CFTYP $REST $NBIN $ASSCMP $PROJCART

∗ $CMETH = BILINEAR or BICUBIC
∗ $CGRS is the source grid type (LR or D)
∗ $CFTYP , $NBIN , $ASSCMP $PROJCART are as for DISTWGT .
∗ $REST is as for DISTWGT , except that only LATITUDE is possible for a Reduced (D)

source grid.
– CONSERV performs 1st or 2nd order conservative remapping, which means that the weight

of a source cell is proportional to area intersected by target cell. Note that the SCRIP library
supposes that the borders of the cells are linear in the longitude-latitude space between the
corners defined by the users or calculated automatically by OASIS3 (see $CGRS). In this
space the border of a cell has to be coincident with the border of its neighbour cell to give
proper results.
The target grid mask is never considered in CONSERV , except with normalisation option
FRACNNEI (see below). To have a value calculated, a target grid cell must intersect at
least one source cell. However, the NORMlisation option (that takes into account the source
grid mask, see below) may result in a null value calculated for those target grid cells. In
that case (i.e. at least one intersecting source cell, but a null value finally calculated be-
cause of the normalisation option), the value 1.0E+20 is assigned to those target grid points
if prism/src/lib/s cr ip/ sr c/ sc ri prm p. f or vector.F90 (for vector interpola-
tion) are compiled with ll weightot=.true . .
The configuring line is:
SCRIPR/CONSERV

$CMETH $CGRS $CFTYP $REST $NBIN $NORM $ORDER $ASSCMP $PROJCART

∗ $CMETH = CONSERV

∗ $CGRS is the source grid type: LR, D and U are supported for 1st-order remapping if the
grid corners are given by the user in the grid data file which is, in this case, necessarily
a netCDF file (grids.nc, see section 7.2); only LR is supported if the grid corners are
not available in the grid data file and therefore have to be calculated automatically by
OASIS3. For second-order remapping, only LR is supported because the gradient of the
coupling field used in the transformation has to be calculated automatically by OASIS3.

∗ $CFTYP, $REST , $NBIN , $ASSCMP ,and $PROJCART are as for DISTWGT . Note that
for CONSERV the restriction does not influence the result.

∗ $NORM is the NORMlization option:
· FRACAREA : The sum of the non-masked source cell intersected areas is used to

NORMlise each target cell field value: the flux is not locally conserved, but the flux
value itself is reasonable.

· DESTAREA : The total target cell area is used to NORMlise each target cell field value
even if it only partly intersects non-masked source grid cells: local flux conservation
is ensured, but unreasonable flux values may result.

· FRACNNEI : as FRACAREA , except that at least the source nearest unmasked neigh-
bour is used for unmasked target cells that intersect only masked source cells. Note
that no value will be calculated for a target cell not intersecting any source cells
(masked or unmasked), even with FRACNNEI option.

∗ $ORDER : FIRST or SECOND 5 for first or second order remapping respectively (see
SCRIP 1.4 documentation).

Support of vector fields

5CONSERV/SECOND has not been tested in detail.

6.4. THE INTERPOLATION 35

SCRIPR supports 2D vector interpolation. Please note however that this functionality is relatively
new and has been tested and validated only in a reduced number of test cases. The two vector
components have to be identified by replacing $CFTYP by VECTOR I or VECTOR J and have to
be associated by replacing $ASSCMP , for each component field, by the source symbolic name of
the associated vector component in (see above). The grids of the two vector components can be
different but have to have the same number of points, the same overlap, the same mask; the same in-
terpolation must be used for the two components. A proper example of vector interpolation is given
in the interpolator-only mode example (see details in prism/util/runni ng /t es ti nte rp /
README testinterp). The details of the vector treatment, performed by the routines
scriprmp vector.F90 and rotations.F90 in prism/src/lib/sc ri p/ sr c are the
following:

– If the angles of the source grid local coordinate system are defined in the grids.nc data file
(see section 7.2), an automatic rotation from the local to the geographic spherical coordinate
system is performed.

– If the two source vector components are not defined on the same source grid, one component
is automatically interpolated on the grid of the other component.

– If the user put the PROJCART keyword at the end of the SCRIPR configuring line (see above),
projection of the two vector components in a Cartesian coordinate system, interpolation of
the resulting 3 Cartesian components, and projection back in the spherical coordinate system
are performed. In debug mode (compilation with DEBUG pre-compiling key), the resulting
vertical component in the spherical coordinate system after interpolation is written to a file
projection.nc ; as the source vector is horizontal, this component should be very close to
0.

– If the user did not put the PROJCART keyword at the end of the SCRIPR configuring line, the
two spherical coordinate system components are interpolated.

– If the angles of the target grid local coordinate system are defined in the grids.nc data file
(see section 7.2), an automatic rotation from the geographic spherical to the local coordinate
system is performed.

– The first and second components of the interpolated vector field are then present in the target
fields associated respectively to the first and second source vector component. The target grids
for the two vector components can be different.

Known problems with SCRIPR

When the SCRIP library performs a remapping, it first checks if the file containing the corres-
ponding remapping weights and addresses exists. If it exists, it reads them from the file; if not,
it calculates them and store them in a file. The file is created in the working directory and is
called rmp srcg to tgtg XXXXXXX NORMAOPT.nc , where srcg and tgtg are the acronyms of
respetively the source and the target grids, XXXXXXX is the interpolation type (i.e. DISTWGT ,
GAUSWGT , BILINEA , BICUBIC , or CONSERV) and NORMAOPT is the normalization option (i.e.
DESTAREA or FRACAREA for CONSERV only). The problem comes from the fact that the weights
and addresses will also differ whether or not the MASK and EXTRAP transformations are first acti-
vated during the pre-processing phase (see section 6.3) and this option is not stored in the remap-
ping file name. Therefore, the remapping file used will be the one created for the first field having
the same source grid, target grid, and interpolation type (and the same normalization option for
CONSERV), even if the MASK and EXTRAP transformations are used or not for that field. This in-
consistency is however usually not a problem as the MASK and EXTRAP transformations are usually
used for all fields having the same source grid, target grid, and interpolation type, or not at all.

• INTERP:

36 CHAPTER 6. THE TRANSFORMATIONS AND INTERPOLATIONS IN OASIS3

INTERP gathers different techniques of interpolation controlled by routine fiasco.f . The fol-
lowing interpolations are available:

– BILINEAR performs a bilinear interpolation using 4 neighbours.
– BICUBIC performs a bicubic interpolation.
– NNEIBOR performs a nearest-neighbour interpolation.

These three interpolations are performed by routines in /prism/src/lib/ fs ci nt and
support only A, B, G, L, Y, or Z grids (see appendix A). All sources grid points, masked or
not, are used in the calculation. To avoid the ‘contamination’ by masked source grid points,
transformations MASK and EXTRAP should be used. Values are calculated for all target grid
points, masked or not.
The configuring line is as follows:
BILINEAR or BICUBIC or NNEIBOR interpolation

$CMETH $CGRS $CFTYP

∗ $CMETH = BILINEAR , BICUBIC or NNEIBOR
∗ $CGRS is the source grid type (A, B, G, L, Y, or Z, see appendix A)
∗ $CFTYP the field type (SCALAR or VECTOR). VECTOR has an effect for target grid

points located near the pole: the sign of a source value located on the other side of the
pole will be reversed.

– SURFMESH (routines in /prism/src/lib/ an ais m) is a first-order conservative remap-
ping from a fine to a coarse grid (the source grid must be finer over the whole domain) and sup-
ports only Lat-Lon grids (see appendix A). For a target grid cell, all the underlying not masked
source grid cells are found and the target grid field value is the sum of the source grid field val-
ues weighted by the overlapped surfaces. No value is assigned to masked cells. Note that it is
not recommended to use this interpolation anymore, as the more general SCRIPR/CONSERV
remapping is now available. The configuring line is as follows:

SURFMESH remapping
$CMETH $CGRS $CFTYP $NID $NV $NIO

∗ $CMETH = SURFMESH

∗ $CGRS and $CFTYP are as for BILINEAR
∗ $NID is the identificator for the weight-address dataset in all the different INTERP/SURFMESH

datasets in the present coupling. This dataset will be calculated by OASIS3 if $NIO = 1,
or only read if $NIO = 0.

∗ $NV is the maximum number of source grid meshes used in the remapping.
– GAUSSIAN (routines in /prism/src/lib/ ana is g) is a gaussian weighted nearest-neighbour

interpolation technique. The user can choose the variance of the function and the number of
neighbours considered. The masked source grid points are not used and no value are calculated
for masked target grid points.
The configuring line is:

GAUSSIAN interpolation
$CMETH $CGRS $CFTYP $NID $NV $VAR $NIO

∗ $CMETH = GAUSSIAN

∗ $CGRS is the source grid type (LR, D or U) and $CFTYP is as for the DISTWGT
∗ $NID is the identificator for the weight-address dataset in all the different INTERP/GAUSSIAN

datasets in the present coupling. This weight-address dataset will be calculated by OA-
SIS3 if $NIO = 1, or only read if $NIO = 0.

∗ $NV is the number of neighbours used in the interpolation.
∗ $VAR is as for SCRIPR/GAUSWGT (see above).

6.4. THE INTERPOLATION 37

• MOZAIC:
MOZAIC performs the mapping of a field from a source to a target grid. The grid-mapping dataset,
i.e. the weights and addresses of the source grid points used to calculate the value of each target
grid point are defined by the user in a file (see section 7.5). The configuring line is:
MOZAIC operation

$CFILE $NUMLU $NID $NV

– $CFILE and $NUMLU are the grid-mapping file name and associated logical unit on which
the grid-mapping dataset is going to be read),

– $NID the identificator for this grid-mapping dataset in all MOZAIC grid-mapping datasets in
the present coupling

– $NV is the maximum number of target grid points use in the mapping.

• NOINTERP:
NOINTERP is the analysis that has to be chosen when no other transformation from the interpolation
class is chosen. There is no configuring line.

• FILLING:
FILLING (routine /prism/src/mod/ oas is 3/ sr c/ fil li ng .f) performs the blending of
a regional data set with a climatological global one for a Sea Surface Temperature (SST) or a Sea
Ice Extent field. This occurs when coupling a non-global ocean model with a global atmospheric
model. FILLING can only handle fields on Logically Rectangular grid (LR, but also A, B, G, L, Y,
and Z grids, see section A.
The global data set has to be a set of SST given in Celsius degrees (for the filling of a Sea Ice Extent
field, the presence or absence of ice is deduced from the value of the SST). The frequency of the
global set can be interannual monthly, climatological monthly or yearly.
The blending can be smooth or abrupt. If the blending is abrupt, only model values are used within
the model domain, and only the global data set values are used outside. If the blending is smooth, a
linear interpolation is performed between the two fields within the model domain over narrow bands
along the boundaries. The linear interpolation can also be performed giving a different weight to
the regional or and global fields.
The smoothing is defined by parameters in /prism/src/mod/ oa si s3/ sr c/ mod smooth.F90 .
The lower smoothing band in the global model second dimension is defined by nsltb (outermost
point) and nslte (innermost point); the upper smoothing band in the global model second dimension
is defined by nnltb (outermost point) and nnlte (innermost point). The parameter qalfa controls the
weights given to the regional and to the global fields in the linear interpolation. qalfa has to be
1/(nslte−nsltb) or 1/(nnltb−nnlte). For the outermost points (nsltb or nnltb) in the smoothing
band, the weight given to the regional and global fields will respectively be 0 and 1; for the inner-
most points (nslte or nnlte) in the smoothing band, the weight given to the regional and global fields
will respectively be 1 and 0; within the smoothing band, the weights will be a linear interpolation
of the outermost and innermost weights.
The smoothing band in the global model first dimension will be a band of nliss points following the
coastline. To calculate this band, OASIS3 needs nwlgmx, the greater first dimension index of the
lower coastline and nelgmx, the smaller first dimension index on the upper coastline. The parameter
qbeta controls the weights given to the regional and to the global fields in the linear interpolation.
qbeta has to be 1/(nliss − 1). The weights given to the regional and global fields in the global
model first dimension smoothing bands will be calculated as for the second dimension.
The user must provide the climatological data file with a specific format described in 7.5. When one
uses FILLING for SST with smooth blending, thermodynamics consistency requires to modify the
heat fluxes over the blending regions. The correction term is proportional to the difference between
the blended SST and the original SST interpolated on the atmospheric grid and can be written out

38 CHAPTER 6. THE TRANSFORMATIONS AND INTERPOLATIONS IN OASIS3

on a file to be read later, for analysis CORRECT for example. In that case, the symbolic name of
the flux correction term read through the input file namcouple must correspond in FILLING and
CORRECT analyses.
In case the regional ocean model includes a coastal part or islands, a sea-land mask mismatch may
occur and a coastal point correction can be performed if the field has been previously interpolated
with INTER/SURFMESH . In fact, the mismatch could result in the atmosphere undesirably “seeing”
climatological SST’s directly adjacent to ocean model SST’s. Where this situation arises, the coastal
correction consists in identifying the suitable ocean model grid points that can be used to extrapolate
the field, excluding climatological grid points.
This analysis requires one configuring line with 3, 4 or 6 arguments.

1. If FILLING performs the blending of a regional data set with a global one for the Sea Ice
Extent, the 3-argument input line is:
Sea Ice Extent FILLING operation

$CFILE $NUMLU $CMETH

the file name for the global data set, $NUMLU the associated logical unit. $CMETH , the
FILLING technique, is a CHARACTER*8 variable: the first 3 characters are either SMO ,
smooth filling, or RAW , no smoothing ; the next three characters must be SIE for a Sea Ice
Extent filling operation; the last two define the time characteristics of the global data file, re-
spectively MO , SE and AN for interannual monthly, climatological monthly and yearly. Note
that in all cases, the global data file has to be a Sea Surface Temperature field in Celsius
degrees.

2. If FILLING performs the blending of a regional data set with a global one for the Sea Surface
Temperature without any smoothing, the 4-argument input line is:
#Sea Surface Temperature FILLING operation without smoothing

$CFILE $NUMLU $CMETH $NFCOAST

$CFILE , $NUMLU are as for the SIE filling. In this case however, $CMETH(1:3) = RAW ,
$CMETH(4:6) = SST , and the last two characters define the time characteristics of the
global data file, as for the SIE filling. $NFCOAST is the flag for the calculation of the coastal
correction (0 no, 1 yes).

3. If FILLING performs the blending of a regional data set with a global one for the Sea Surface
Temperature with smoothing, the 6-argument input line is:
#Sea Surface Temperature FILLING operation with smoothing

$CFILE $NUMLU $CMETH $NFCOAST $CNAME $NUNIT

where $CFILE , $NUMLU and $NFCOAST are as for the SST filling without smoothing. In this
case, $CMETH(1:3) = SMO , $CMETH(4:6) = SST , and the last two characters define
the time characteristics of the global data file, as for the SIE filling. $CNAME is the symbolic
name for the correction term that is calculated by OASIS3 and $NUNIT the logical unit on
which it is going to be written.

6.5 The “cooking” stage

The following analyses are available in the “cooking” part of OASIS3, controlled by cookart.f .

• CONSERV:
CONSERV (routine /prism/src/mod /oa si s3 /s rc /co ns er v. f) performs global flux con-
servation. The flux is integrated on both source and target grids, without considering values of
masked points, and the residual (target - source) is calculated. Then all flux values on the target grid
are uniformly modified, according to their corresponding surface. This analysis requires one input
line with one argument:

6.5. THE “COOKING” STAGE 39

CONSERV operation
$CMETH

version, only global flux conservation can be performed. Therefore $CMETH must be GLOBAL .
• SUBGRID:
SUBGRID can be used to interpolate a field from a coarse grid to a finer target grid (the target
grid must be finer over the whole domain). Two types of subgrid interpolation can be performed,
depending on the type of the field.
For solar type of flux field ($SUBTYPE = SOLAR), the operation performed is:

Φi =
1 − αi

1 − α
F

where Φi (F) is the flux on the fine (coarse) grid, αi (α) an auxiliary field on the fine (coarse) grid
(e.g. the albedo). The whole operation is interpolated from the coarse grid with a grid-mapping
type of interpolation; the dataset of weights and addresses has to be given by the user.
For non-solar type of field ($SUBTYPE = NONSOLAR), a first-order Taylor expansion of the field
on the fine grid relatively to a state variable is performed (for instance, an expansion of the total
heat flux relatively to the SST):

Φi = F +
∂F

∂T
(Ti − T)

where Φi (F) is the heat flux on the fine (coarse) grid, Ti (T) an auxiliary field on the fine (coarse)
grid (e.g. the SST) and ∂F

∂T
the derivative of the flux versus the auxiliary field on the coarse grid.

This operation is interpolated from the coarse grid with a grid-mapping type of interpolation; the
dataset of weights and addresses has to be given by the user.
This analysis requires one input line with 7 or 8 arguments depending on the type of subgrid inter-
polation.

1. If the the SUBGRID operation is performed on a solar flux, the 7-argument input line is:
SUBGRID operation with $SUBTYPE=SOLAR
$CFILE $NUMLU $NID $NV $SUBTYPE $CCOARSE $CFINE

$CFILE and $NUMLU are the subgrid-mapping file name and associated logical unit (see sec-
tion 7.5 for the structure of this file); $NID the identificator for this subgrid-mapping dataset
within the file build by OASIS based on all the different SUBGRID analyses in the present
coupling; $NV is the maximum number of target grid points use in the subgrid-mapping;
$SUBTYPE = SOLAR is the type of subgrid interpolation; $CCOARSE is the auxiliary field
name on the coarse grid (corresponding to α) and $CFINE is the auxiliary field name on fine
grid (corresponding to αi). These two fields needs to be exchanged between their original
model and OASIS3 main process, at least as AUXILARY fields. This analysis is performed
from the coarse grid with a grid-mapping type of interpolation based on the $CFILE file.

2. If the the SUBGRID operation is performed on a nonsolar flux, the 8-argument input line is:
SUBGRID operation with $SUBTYPE=NONSO LAR
$CFILE $NUMLU $NID $NV $SUBTYPE $CCOARSE $CFINE $CDQDT

$NV are as for a solar subgrid interpolation; $SUBTYPE = NONSOLAR ; $CCOARSE is the
auxiliary field name on the coarse grid (corresponding to T) and $CFINE is the auxiliary field
name on fine grid (corresponding to Ti); the additional argument $CDQDT is the coupling ratio
on the coarse grid (corresponding to ∂F

∂T
) These three fields need to be exchanged between their

original model and OASIS3 main process as AUXILARY fields. This operation is performed
from the coarse grid with a grid-mapping type of interpolation based on the $CFILE file.

40 CHAPTER 6. THE TRANSFORMATIONS AND INTERPOLATIONS IN OASIS3

• BLASNEW:
BLASNEW (routine /prism/src/mod/ oas is 3/ sr c/ bla sn ew .f) performs a linear combi-
nation of the current coupling field with any other fields after the interpolation. These can be other
coupling fields or constant fields.
This analysis requires the same input line as BLASOLD .

• MASKP:
A new analysis MASKP can be used to mask the fields after interpolation. MASKP has the same
generic input line as MASK .

6.6 The post-processing

The following analyses are available in the post-processing part of OASIS3, controlled by /prism/src/
mod/oasis3/src/ po st pr o. f .

• REVERSE:
This transformation is obsolete in the current OASIS version.

REVERSE (routine /prism/src/mod/ oas is 3/ sr c/ rev er se .f) reorders a field.
This analysis requires the same input line as INVERT , with $CORLON and $CORLAT being now
the resulting orientation. REVERSE does not work for U and D grids (see appendix A). Note that
INVERT does not transform the associated grid or mask.

• CHECKOUT:
CHECKOUT (routine /prism/src/mod /o as is3 /s rc /c hk fld .f) calculates the mean and
extremum values of an output field and prints them to the coupler output cplout.
The generic input line is as for CHECKIN (see above).

• GLORED

This transformation is obsolete in the current OASIS version as coupling fields can be directly
interpolated to a target Reduced grid, if needed; this transformation should not be used anymore.

GLORED performs a linear interpolation of field from a full Gaussian grid to a Reduced grid. When
present, GLORED must be the last analysis performed.
Before doing the interpolation, non-masked values are automatically extrapolated to masked points
with EXTRAP/NINENN method (see above); to do so, the masked grid points are first replaced with
a predefined value. The required global grid mask must be present in data file masks or masks.nc
(see section 7.2).
The generic input line is as follows:
GLORED operation

$NNBRLAT $NV $NIO $NID

is as for REDGLO (see REDGLO description above). The next 3 parameters refer to the EXTRAP/NINENN
extrapolation (see EXTRAP/NINENN description above). The value assigned to all land points be-
fore interpolation is given by amskred in /prism/src/mod/o as is 3/ sr c/b lk da ta .f ; as
for the $VALMASK in MASK analysis, it has to be chosen well outside the range of your field values
but not too large to avoid any representation problem.

Chapter 7

OASIS3 auxiliary data files

OASIS3 needs auxiliary data files describing coupling and I/O field names and units, defining the grids
of the models being coupled, containing the field coupling restart values or input data values, as well as a
number of other auxiliary data files used in specific transformations.

7.1 Field names and units

The text file cf name table.txt , that can be found in directory prism/util/runn in g
/toyclim/input directory, contains a list of CF standard names and associated units identified with
an index. The appropriate index has to be given by the user for each coupling or I/O field as the third entry
on the field first line (see 5.3). This information will be used by OASIS3 for its log messages to cplout file
and by the PSMILe to produce CF compliant NetCDF files.

7.2 Grid data files

The grids of the models being coupled must be given by the user, or directly by the model through
PSMILe specific calls (see section 4.2) in grid data files. These files can be all binary or all NetCDF. In
/prism/data/toy cl im /i np ut toyclim standard standard prism 2-2.tar.gz , Net-
CDF examples can be found.
The arrays containing the grid information are dimensioned (nx, ny) , where nx and ny are the grid
first and second dimension, except for Unstructured (U) and Reduced (D) grid, for which the arrays are
dimensioned (nbr pts,1) , where nbr pts is the total number of grid points.

1. grids or grids.nc: contains the model grid longitudes, latitudes, and local angles (if any) in single
or double precision REAL arrays (depending on OASIS3 compilation options). The array names
must be composed of a prefix (4 characters), given by the user in the namcouple on the second
line of each field (see section 5.3), and of a suffix (4 characters); this suffix is “.lon” or “.lat”
for respectively the grid point longitudes or latitudes (see /prism/src/mod/ oa si s3/ sr c
/mod label.F90 .)
For SCRIPR interpolations, the grid data files must be NetCDF files. If the SCRIPR/CONSERV
remapping is used, longitudes and latitudes for the source and target grid corners must also be
available in the grids.nc file as arrays dimensioned (nx,ny,4) or (nbr pts,1,4) where 4 is
the number of corners (in the counterclockwize sense). The names of the arrays must be composed
of the grid prefix and the suffix “.clo” or “.cla” for respectively the grid corner longitudes or lati-
tudes. As for the other grid information, the corners can be provided in grids.nc before the run by
the user or directly by the model through PSMILe specific calls (see section 4.2); furthermore, for
Logically Rectangular LR source grids only, the grid corners will be automatically calculated if they

41

42 CHAPTER 7. OASIS3 AUXILIARY DATA FILES

are not available in grids.nc (if needed, the corresponding reverse remapping can be done in which
the current target grid become the source grid).
Longitudes must be given in degrees East in the interval -360.0 to 720.0. Latitudes must be given in
degrees North in the interval -90.0 to 90.0. Note that if some grid points overlap, it is recommended
to define those points with the same number (e.g. 360.0 for both, not 450.0 for one and 90.0 for
the other) to ensure automatic detection of overlap by OASIS. Note also that cells larger than 180.0
degrees in longitude are not supported.
If vector fields are defined on a grid which has a local coordinate system not oriented in the usual
zonal and meridional directions, the local angle of the grid coordinate system must be given in
grids.nc file in an array which name must be composed of the grid prefix and the suffix “.ang”.
The angle is defined as the angle between the first component and the zonal direction (which is
also the angle between the second component and the meridional direction). In the grid file in
/prism/data/toy cl im/ in pu t toyclim standard standard prism 2-2.tar.gz ,
the angles of the torc grid are given in array torc.ang . If one of the SCRIPR interpolations is
requested for a vector field, OASIS3 automatically performs the rotation from the local coordinate
system to the geographic spherical coordinate system for a source grid, or vice-versa for a target
grid.
File grids or grids.nc must be present with at least the grid point longitudes and latitudes for all
component model.

2. masks or masks.nc: contains the masks for all component model grids in INTEGER arrays (0 -not
masked- or 1 -masked- for each grid point). The array names must be composed of the grid prefix
and the suffix “.msk”. This file, masks or masks.nc, is mandatory.

3. areas or areas.nc: this file contains mesh surfaces for the component model grids in single or
double precision REAL arrays (depending on OASIS3 compilation options). The array names must
be composed of the grid prefix and the suffix “.srf”. The surfaces may be given in any units but
they must be all the same (in INTERP/GAUSSIA N , it is assumed that the units are m2 but they
are used for statistics calculations only.) This file areas or areas.nc is mandatory for CHECKIN ,
CHECKOUT or CONSERV , and used for statistic calculations in INTERP/GAUSSIA N ; it is not
required otherwise.

4. maskr or maskr.nc: this file contains Reduced (D) grid mask in INTEGER arrays dimensioned
array(nbr pts) where nbr pts is the total number of the Reduced grid points (0 -not masked-
or 1 -masked- for each grid point). This file is required only for grids to which the REDGLO or
GLORED transformation is applied. As mentionned above, these transformations should not be used
anymore as interpolations are now available for Reduced grids directly. If used, the mask array
name must be “MSKRDxxx” where “xxx” is half the number of latitude circles of the reduced grid
(032 for a T42 for example).

If the binary format is used, grids, masks, areas, and maskr must have the following structure. The array
name is first written to the file to locate a data set corresponding to a given grid. The data set is then
written sequentially after its name. Let us call “brick” the name and its associated data set. The order in
which the bricks are written doesn’t matter. All the bricks are written in the grid data file in the following
way:

...
WRITE(LU) array_name
WRITE(LU) auxildata
...

• LU is the associated unit,
• array name is the name of the array (CHARACTER*8),
• auxildata is the REAL or INTEGER array dimensioned (nx, ny) or (nbr pts,1) con-

taining the grid data.

7.3. COUPLING RESTART FILES 43

7.3 Coupling restart files

At the beginning of a coupled run, some coupling fields may have to be initially read from their cou-
pling restart file (see section 4.8). If needed, these files are also automatically updated by the last
prism put proto call of the run (see section 4.6.1) . To force the writing of the field in its coupling
restart file, one can use the routine prism put restart proto (see section 4.6.3). Warning: the
date is not written or read to/from the restart file; therefore, the user has to make sure that the appropriate
restart file is present in the working directory.
The name of the coupling restart file is given by the 6th character string on the first configuring line for
each field in the namcouple (see section 5.3). Coupling fields coming from different models cannot be in
the same coupling restart files, but for each model, there can be an arbitrary number of fields written in
one coupling restart file. Note that in the NONE techniques, output files with the same format are also
created for writing the resulting field after transformation.
In the coupling restart files, the fields must be single or double precision REAL arrays (depending on
PSMILe and OASIS3 compilation options) and, as the grid data files, must be dimensioned (nx, ny) ,
where nx and ny are the grid first and second dimension, except for fields given on Unstructured (’U’)
and Reduced (’D) grid, for which the arrays are dimensioned (nbr pts,1) , where nbr pts is the total
number of grid points. The shape and orientation of each restart field (and of the corresponding coupling
fields exchanged during the simulation) must be coherent with the shape of its grid data arrays.
Both binary and NetCDF formats are supported; for NetCDF file the suffix .nc is not mandatory. If the
coupling restart file for the first field is in NetCDF format, OASIS3 will assume that all coupling restart
files (and output files for NONE communication techniques) are NetCDF1.
In the NetCDF restart files, the field arrays must have the source symbolic name indicated in the namcouple
(see section 5.3).
In binary restart file, each field is written in the following way:

...
WRITE(LU) array_name
WRITE(LU) restartdata
...

• LU is the associated unit,
• array name is the source symbolic name of the field (CHARACTER*8),
• restartdata is the restart field REAL array dimensioned (nx, ny) or (nbr pts,1) 2

7.4 Input data files

Fields with status INPUT in the namcouple will, at runtime, simply be read in from a NetCDF input file
by the target model PSMILe below the prism get proto call, at appropriate times corresponding to
the input period indicated by the user in the namcouple.

The name of the file must be the one given on the field first configuring line in the namcouple (see section
5.3.3). There must be one input file per INPUT field, containing a time sequence of the field in a single
or double precision REAL array (depending on PSMILe compilation options), named with the field sym-
bolic name in the namcouple and dimensioned (nx,ny,time) or (nbr pts,1,time) . The time
variable as to be an array time(time) expressed in “seconds since beginning of run”. The “time”

1Note that even if the grid auxiliary data files are in NetCDF format, the restart coupling files may be in binary format, or
vice-versa.

2If REDGLO is the first transformation applied on a Reduced grid field, the Reduced field must be given is an array
restartdata(nx*ny) where nx and ny are the global Gaussian grid dimensions and the Reduced field is completed by
trailing zeros.

44 CHAPTER 7. OASIS3 AUXILIARY DATA FILES

dimension has to be the unlimited dimension. For a practical example, see the file SOALBEDO.nc in
/prism/data/toy cl im /i np ut toyclim standard standard prism 2-2.tar.gz .

7.5 Transformation auxiliary data files

Many transformation need auxiliary data files, such as the grid-mapping files used for an interpolation.
Some of them are created automatically by OASIS3, others have to be generated by the user before starting
the coupled run.

7.5.1 Auxiliary data files for EXTRAP/NINENN , EXTRAP/WEIGHT , INTERP/SURFMESH ,
INTERP/GAUSSIAN , MOZAIC , and SUBGRID

The auxiliary data files containing the weights and addresses used in these transformations have a similar
structure; their names are given in Table 7.1.

File name Description
nweights weights, addresses and iteration number for EXTRAP/NINENN interpolation
any name weights and addresses for EXTRAP/WEIGHT extrapolation
mweights weights and addresses for INTERP/SURFMESH interpolation
gweights weights and addresses for INTERP/GAUSSIAN interpolation
any name weights and addresses for MOZAIC interpolation
any name weights and addresses for SUBGRID interpolation

Table 7.1: Analysis auxiliary data files

The files nweights, mweights and gweights can be created by OASIS3 if their corresponding $NIO = 1
(see EXTRAP/NINENN, INTERP/SURFMESH , INTERP/GAUSSIAN in sections 6.3 and 6.4).
The name of the (sub)grid-mapping files for MOZAIC, EXTRAP/WEIGHT and SUBGRID analyses can
be chosen by the user and have to be indicated in the namcouple (see respectively sections 6.3 and 6.4 and
6.5). These files have to be generated by the user before starting the coupled run.

The structure of these files is as follows:

...
CHARACTER*8 cladress,clwei gh t
INTEGER iadress(jpnb,j po)
REAL weight(jpnb,jpo)
OPEN(unit=90, file=’at31topa ’, form=’unformatt ed ’)
WRITE(clweight, ’(’’W EI GH TS ’’ ,I1)’) knumb
WRITE(cladress, ’(’’A DR ES SE ’’ ,I1)’) knumb
WRITE (90) clweight
WRITE (90) weight
WRITE (90) cladress
WRITE (90) iadress

where
• jpnb is the maximum number of neighbors used in the transformation ($NVOISIN in the nam-

couple)
• jpo is the total dimension of the target grid
• at31topa is the name of the grid-mapping data file ($CFILE in namcouple)
• knumb is the identificator of the data set ($NID in namcouple)
• cladress is the locator of the address dataset

7.5. TRANSFORMATION AUXILIARY DATA FILES 45

• clweight is the locator of the weight dataset
• iadress (i,j) is the address on the source grid of the ie neighbor used for the mapping of the

je target grid point. The address is the index of a grid point within the total number of grid points.
• weight(i,j) is the weight affected to the ie neighbor used for the transformation of the je target

grid point
For file nweights, there is an additional brick composed of a CHARACTER*8 variable (formed by the
characters INCREME and by the data set identificator) and of an INTEGER array(N) which is the
iteration number within EXTRAP/NINENN at which the extrapolation of the ne grid point is effectively
performed.

7.5.2 Auxiliary data files for FILLING

For the FILLING analysis, the global data set used can be either interannual monthly, climatological
monthly or yearly (see 6.4). The name of the global data file can be chosen by the user and has to be
indicated in the namcouple have to be given to OASIS through the input file namcouple. In case of
monthly data, the file must be written in the following way:

...
REAL field_january_y ea r_ 01 (j pi, jpj)
...
WRITE(NLU_fil) field_january_ye ar _0 1
WRITE(NLU_fil) field_february_y ea r_ 01
WRITE(NLU_fil) field_march_year _0 1
etc...
WRITE(NLU_fil) field_december_y ea r_ 01

C
C if climatology, one stops here
C

WRITE(NLU_fil) field_january_ye ar _0 2
etc...

where
• field ... is the global dataset
• jpi and jpj are the dimensions of the grid on which FILLING is performed
• NLU fil is the logical unit associated to the global data file and is defined in the input file nam-

couple

Note that the first month needs not to be a january. This is the only file within OASIS in which the fields
are not read using a locator.

7.5.3 Auxiliary data files for SCRIPR

The NetCDF files containing the weights and addresses for the SCRIPR remappings (see section 6.4) are
automatically generated at runtime by OASIS3. Their structure is described in detail in section 2.2.3 of
the SCRIP documentation available in prism/src/mod/oa si s3 /d oc/ SC RI Pu se rs. pd f .

Chapter 8

Compiling and running OASIS3

8.1 Compiling OASIS3 and TOYCLIM

Compiling OASIS3 and TOYCLIM (see section 8.2.1) can be done using the top makefile
TopMakefileOasi s3 and platform dependent header files as described in section 8.1.1. Note OASIS3
is temporarily released without the corresponding PRISM Standard Compile Environment and Running
Environment (SCE/SRE); they will be included when the migration from CVS to Subversion will be
realized in CERFACS.
During compilation, a new directory branch is created /prism/ arch, where arch is the name of the com-
piling platform architecture (e.g. Linux). After successful compilation, resulting executables are found in
/prism/ arch/bin , libraries in /prism/ arch/lib and object and module files in /prism/ arch/build .
The different pre-compiling flags used for OASIS3 and its associated PSMILe library are described in
section 8.1.2.

8.1.1 Compilation with TopMakefileOasis3

Compiling OASIS3 and TOYCLIM using the top makefile TopMakefileOas is3 can be done in di-
rectory prism/src/mod/ oas is 3/ ut il /ma ke dir . TopMakefileOas is 3 must be completed
with a header file make. your platform specific to the compiling platform used and specified in
prism/src/mod/o as is 3/ ut il/ ma ke dir/make.inc . One of the files make.pgi cerfacs ,
make.sx frontend or make.aix can by used as a template. The root of the prism tree can be any-
were and must be set in the variable PRISMHOME in the make. your platform file. The choice of MPI1,
MPI2 or NONE (interpolator-only mode, see section 6.1) is also done in the make. your platform file (see
$CHAN therein).
The following commands are available:

• make -f TopMakefileOas is 3

compiles OASIS3 libraries clim, anaisg, anaism, fscint, scrip and creates OASIS3 main executable
oasis3.$CHAN.x (where $CHAN is MPI1 , MPI2 or NONE) ;

• make -f TopMakefileOas is 3 toyclim

compiles OASIS3 libraries as above, compiles mpp io and psmile librairies, and creates OASIS3 and
TOYCLIM executables oasis3.MPI[1/2].x, toyatm.MPI[1/2].x, toyoce.MPI[1/2].x and toylan.MPI[1/2].x
;

• make clean -f TopMakefileOas is3 :
cleans OASIS3 and TOYCLIM compiled files, but not the libraries ;

• make realclean -f TopMakefileOasi s3 :
cleans OASIS3 and TOYCLIM compiled files including libraries.

46

8.1. COMPILING OASIS3 AND TOYCLIM 47

Log and error messages from compilation are saved in the files COMP.log and COMP.err in make dir.

8.1.2 CPP keys

The following CPP keys are coded in OASIS3 and associated PSMILe library and can be specified in
CPPDEF in make. your platform file.

• To indicate which communication technique will be used (see sections 4.1 and 5.2):

– use comm MPI2 (by default): CLIM/MPI2
– use comm MPI1 : CLIM/MPI1
– use comm NONE : no communication technique for Oasis (interpolator-only mode NONE)

The SIPC, PIPE and GMEM communication techniques available in previous versions should still
work but are not maintained anymore and were not tested.

• To indicate the precision for REAL variables:

– use realtype double (by default): to exchange double precision coupling fields de-
clared as REAL(kind=SELECT ED REAL KIND(12,307))

– use realtype single : to exchange single precision coupling fields declared as
REAL(kind=SELEC TE D REAL KIND(6,37))

Note that if use realtype single is activated the compiling option promoting reals should be
removed from F90FLAGS .

• When linking OASIS3 and PSMILe with a netCDF library which is highly recommended1 (the
opposite case should work but was not fully tested):

– use netCDF

• Mandatory for compiling the mpp io and psmile libraries:
– use libMPI

• Mandatory for compiling the mpp io library if LAM implementation of MPI is used:
– use LAM MPI

• For more information in log files *.prt* during the psmile library exchanges:
– VERBOSE

• For more debugging information to the standard output from the mpp io library:
– DEBUG

• The CPP key DEBUG can also be activated for:

– deadlock detection in clim and psmile librairies;
– more debugging information in log files *.prt* during the psmile library I/Os;
– in SCRIPR vector transformation, for writing the resulting vertical component in the spherical

coordinate system after interpolation to a file projection.nc (see section 6.4).

• To compile the PSMILe communication library without the I/O functionality (see section 5.3), i.e
to compile only empty routines in prism/src/lib/ mp p io :

– key noIO

• For compiling without linking the SCRIP library:
– key noSCRIP

• Other platform dependent CPP keys, that should be automatically activated on the corresponding
platforms, are defined and used in prism/src/lib/m pp io/include

1Linking with netCDF is mandatory when using SCRIPR transformations (see section 6.4).

48 CHAPTER 8. COMPILING AND RUNNING OASIS3

8.2 Running OASIS3 in coupled mode with TOYCLIM

In order to test the OASIS3 coupler in a light coupled configuration, CERFACS has written 3 “toy” com-
ponent models, mimicking an atmosphere model (toyatm), an ocean model (toyoce), and a chemistry
model (toyche). These “toy” component models are ‘empty’ in the sense that they do not model any real
physics or dynamics. The coupled combination of these 3 “toy” component models through OASIS3 cou-
pling software is refered to as the TOYCLIM coupled model; the TOYCLIM coupling is realistic as the
coupling algorithm linking the toy component models, the size and the grid of the 2D coupling fields, and
the operations performed by OASIS3 on the coupling fields are realistic.
The current version of OASIS3 and its TOYCLIM example coupled model was successfully compiled and
run on NEC SX6, IBM Power4, and Linux PC DELL, and previous versions were compiled and run on
many other platforms.
Compiling OASIS3 and TOYCLIM was described in section 8.1. In the following section, the TOYCLIM
example coupled model is first described in more detail (see section 8.2.1), then instructions on how to
run TOYCLIM are given in section 8.2.2.

8.2.1 TOYCLIM description

The toyoce model

The toyoce model, which sources can be found in prism/src/mod/t oy oce /s rc , has a 2D logically-
rectangular, streched and rotated grid of 182x152 points, which corresponds to a real ocean model grid
(the pole of convergence is shifted over Asia). Toyoce timestep is 14400 seconds; it performs therefore 36
timesteps per 6-day run.
OASIS3 PRISM System Model Interface (PSMILe) routines are detailed in section 4. At the beginning of
a run, toyoce performs appropriate PSMILe calls to initialize the coupling, define its grids, and declare its
I/O or coupling fields. As toyoce is not parallel, it calls the PSMILe prism def partition routine to define
only one Serial partition containing the 182X152 grid points.
Then, toyoce starts its timestep loop. At the beginning of its timestep, toyoce calls the PSMILe prism get
routine 7 times to request the fields named Field3 to Field9 on table 8.1. At the end of its timestep, toyoce
calls PSMILe prism put routine to send fields named Field1 and Field2 on table 8.1. The fields will be
effectively received or sent only at the coupling frequency defined by the user (see section 5.3). As toyoce
contains no real physics or dynamics, it defines a simple feed back between Field1 and Field3 and between
Field2 and Field7 such as:

Field1 = Field3 + 1

Field2 = Field7 + 1

Finally, at the end of the run, toyoce performs the PSMILe finalization call.

The toyatm model

The toyatm model, which sources can be found in prism/src/mod/t oy at m/ sr c , has a realistic
atmospheric T31 Gaussian grid (96x48 points). Its timestep is 3600 seconds; it therefore performs 144
timesteps per 6-day run.
As toyoce, toyatm performs, at the beginning of a run, appropriate PSMILe calls to initialize the coupling,
define its grids, and declare its I/O or coupling variables. Then toyatm retrieves a local communicator
for its internal parallelization with a call to PSMILe prism get localcomm routine, useful if the MPI1
communication technique is chosen by the user (see section 4.1). Toyatm can run on 1 or 3 processes,
depending on the variable il nbcplproc (hardcoded to 3 by default). If the user modifies this vari-
able and hardcodes il nbcplproc = 1 , toyatm runs on only one process and defines only one Serial

8.2. RUNNING OASIS3 IN COUPLED MODE WITH TOYCLIM 49

partition containing the 96X48 grid points. If il nbcplproc = 3 , toyatm runs on 3 processes and its
decomposition depends on the cdec parameter, hardcoded to APPLE . In this case, each of the 3 toyatm
processes calls the PSMILe prism def partition routine to define 1 segment of an APPLE decomposition
(1536 grid points per segment). If the user changes the hardcoded value of cdec to BOX , each process
will define 1 ‘box’ of a BOX decomposition; the first two processes treat a box of 64X24 points, while the
third process treats a box of 128X12 points. If the user hardcodes cdec=‘ORANGE‘ , each process will
define a partition of two segments of 768 points distant of 1536 points.
Then, toyatm starts its timestep loop. At the beginning of its timestep, toyatm calls the PSMILe prism get
routine 3 times to request the fields named Field1, Field2 and Field11 on table 8.1. At the end of its
timestep, toyatm calls PSMILe prism put routine to send fields named Field4 to Field10 on table 8.1. The
fields will be effectively received or sent only at the coupling frequency defined by the user (see section
5.3). As toyatm contains no real physics or dynamics, it defines a simple feed back between the different
fields as:

Field5 = Field1 + 1

Field7 = Field2 + 1

Field10 = Field11 + 1

Field4 = Field1 + 1

Field8 = Field2 + 1

Field6 = Field1 + 1

Field9 = Field2 + 1

Finally, at the end of the run, toyatm performs the PSMILe finalization call.

The toyche model

Toyche, which sources can be found in prism/src/mod/to yc he /s rc , is integrated on the same
atmospheric model grid than toyatm. Its timestep is 7200 seconds; it therefore performs 72 timesteps per
6-day run.
As the other toymodels, toyche performs, at the beginning of a run, appropriate PSMILe calls to initialize
the coupling, define its grids, and declare its I/O or coupling variables; it also retrieves a local commu-
nicator if needed. As toyche has the same grid than toyatm, a direct exchange of coupling fields can
occur between those two models, without going through OASIS3 interpolation process. To insure this,
the coupling field must have a field status ‘IGNORED’ or ‘IGNOUT’ in the OASIS3 configuration file
namcouple (see section 5.3) and the two models must have also the same parallel decomposition. Toyche
decomposition is hardcoded the same way than toyatm, and if the user modifies the toyatm decomposition,
he has to modify the toyche decomposition the same way by changing toyche values for il nbcplproc
and cdec (see above for toyatm).
At the beginning of its timestep, toyche calls the PSMILe prism get routine to request Field10 (see table
8.1). At the end of its timestep, toyche calls PSMILe prism put routine to send Field11. As toyche contains
no real physics or dynamics, it defines a simple feed back between Field11 and Field10 such as:

Field11 = Field10 + 1

Finally, at the end of the run, toyche performs the PSMILe finalisation call.

50 CHAPTER 8. COMPILING AND RUNNING OASIS3

TOYCLIM coupling algorithm

The coupling algorithm between the TOYCLIM component models toyoce, toyatm, and toyche is de-
scribed here.
Table 8.1 lists the coupling fields exchanged between those 3 model components, giving the symbolic
name used in each component and indicating whether the model produces the field (src) or receives it
(tgt).

toyoce toyatm toyche restart function
Field1 SOSSTSST (src) SISUTESU (tgt) fldo1.nc F1

Field2 SOICECOV (src) SIICECOV (tgt) fldo1.nc F1

Field3 SOALBEDO (tgt) SOALBEDO.nc
Field4 SONSHLDO (tgt) CONSFTOT (src) flda1.nc F2

Field5 SOSHFLDO COSHFTOT (src) F2

Field6 SOWAFLDO (tgt) COWATFLU (src) flda1.nc F2

Field7 SORUNOFF (tgt) CORUNOFF (src) flda1.nc F2

Field8 SOZOTAUX (tgt) COZOTAUX (src) flda2.nc F3

Field9 SOMETAUY (tgt) COMETAUY (src) flda2.nc F3

Field10 COSENHFL (src) SOSENHFL (tgt) flda3.nc F1

Field11 COTHSHSU (tgt) SOTHSHSU (src) flda4.nc F1

Table 8.1: Coupling and I/O fields of the TOYCLIM coupled model. The symbolic name used in each toy model is
given and it is indicated whether the model produces the field (src) or receives it (tgt). The function used
to create the field in the initial restart file is also given.

Figure 8.1 illustrates the coupling algorithm between the 3 TOYCLIM toy models for Field1, Field3,
Field4, Field10, and Field11.
Field1 is sent from toyoce component to toyatm component at the coupling frequency dtF1 defined
by the user in the configuring file namcouple. As interpolation is needed between toyoce and toyatm
grids, this exchange must go through OASIS3 interpolation process. In the namcouple, Field1 field
status must therefore be EXPORTED and the interpolation must be defined. If the user wants the
field to be also automatically written to files before being sent (below the prism put), and after being
received (below the prism get), he can choose the field status EXPOUT . In toyoce and toyatm codes, the
prism put and prism get routines are respectively called every timestep with an argument corresponding
to the time at the beginning of the timestep. The lag of Field1, defined as 4 hours (14400 seconds) in
the namcouple, is automatically added to the prism put time argument; the prism put called at the toyoce
timestep preceeding the coupling period therefore matches the prism get called in toyatm at the coupling
period.
At the beginning of the run (i.e. at time = 0), the toyoce prism put for Field1 is not activated (as a positive
lag is defined for Field1) and OASIS3 automatically read Field1 in its coupling restart file, fldo1.nc, and
sends it to toyatm component after interpolation. The different functions used to create the fields in the
initial restart file are also indicated in table 8.1. They are defined as follows:

F1 = 2 + cos[π ∗ acos(cos(θ)cos(φ))]

F2 = 2 + cos2(θ)cos(2φ)

F3 = 2 + sin16(2φ)cos(16φ)

F1 represents a global dipole reaching its maximum and minimum values at the equator, respectively at the
date-line and at the Greenwich meridian. F2 represents two dipoles reaching respectively their maximum
and minimum values at the equator, respectively at the date-line and at 90o W, and at the Greenwich
meridian and at 90o E; it is similar to a spherical harmonic with l = 2 and m = 2, where l is the sherical

8.3. RUNNING OASIS3 IN INTERPOLATOR-ONLY MODE 51

harmonic order and m is the azimuthal wave number. F3 represents a series of dipoles centered at 45o N
and 45o S; it is similar to a spherical harmonic with l = 32 and m = 16 and is useful for testing interpolation
of fields with relatively high spatial frequency and rapidly changing gradients.
The exchange of Field2 from toyoce to toyatm and Field4, Field6, Field7, Field8 and Field9 from
toyatm to toyoce follow exactly the same logic as for Field1.
Field3 as a status INPUT in the namcouple. Field3 will therefore not be exchanged between two models
but will be read from a file automatically below the target model toyoce prism get calls, at the user-defined
frequency in the input file also specified in the namcouple, SOALBEDO.nc .
Field5 as a status of OUTPUT in the namcouple. It will therefore be only automatically written to a file at
the user-defined frequency, below the source model toyatm prism put calls. The name of the file will be
automatically composed of the field symbolic name (here COSHFTOT) and of the begin and end dates of
the run. The prism get calls in the toyoce model will not be activated at all.
Field10 and Field11 are exchanged respectively from toyatm to toyche and from toyche to toyatm fol-
lowing Field1 logic described here above, except that the exchanges take place directly between the
component models without going to OASIS3 interpolation process, as toyatm and toyche have the same
grid and the same parallel partition. The fields status chosen by the user for those fields in the namcouple
should therefore be IGNORED (or IGNOUT if the user wants the fields also automatically be written to
files below the prism put and after the prism get). At the beginning of the run (i.e. at time = 0), the toyoce
prism get called to receive those fields will automatically read the fields in their corresponding coupling
restart files flda3.nc and flda4.nc.

8.2.2 Running TOYCLIM using the script run toyclim

Data for running TOYCLIM are contained in tar file input toyclim standard standard prism
2-2.tar.gz or input toyclim standard standard prism 2-2 single.tar.gz in di-

rectory prism/data/toy cl im . Input files and script are located in directory prism/util/runn in g/
toyclim .
To run TOYCLLIM, one has to compile OASIS3 and the 3 TOYCLIM component models (see section
8.1), to adapt the “User’s section” of the running script prism/util/runn in g/t oy cl im /s cri pt /
run toyclim for his/her platform, and to launch it. The script run toyclim was tested on Linux PC,
NEC SX-6, and IBM Power4.
To run the single precision case, OASIS3 and the 3 component models have to be compiled in sin-
gle precision (see section 8.1.2), the configuration file prism/util/run ni ng/ to yc li m/ inp ut /
namcouple single has to be renamed namcouple (in the same directory, so to be used automati-
cally), and comp precision=single has to be specified in run toyclim . The configuration file
namcouple single has to be used because the original namcouple specifies some MOZAIC transfor-
mations using binary auxiliary files that were not converted; the results obtained with namcouple single ,
into which the MOZAIC transformations are replaced by SCRIPR/DISTWGT interpolations, will be
slightly different.

8.3 Running OASIS3 in interpolator-only mode

OASIS3 can be used in an interpolator-only mode, in which case it transforms fields without running any
model (see section 6.1). Two test-cases are provided with OASIS3 to illustrate its uses in this mode, the
“testinterp” test-case (see section 8.3.1) and the “testNONE” test-case (see section 8.3.2).

52 CHAPTER 8. COMPILING AND RUNNING OASIS3

0

4

ATM

CHE

F10

0 144

F10

OCE

2 4

41 32

F10

F10

flda3.nc

F4

F1

fldo1.nc

+1h

dtF10

F11

F11

+2h

dtF11

F11

flda4.nc

F11

flda4.nc

flda3.nc

F10

F4

flda1.nc F1

F1

+4h

F4

F4

+1h

144

F4

F1

flda1.nc

fldo1.nc

dtF1

dtF4

OASIS

dtCHE

dtATM

dtOCE

F10 F10 F10

F4 F4 F4F1 F1 F1 F1

F11 F11 F11 F11

F11 F11F10 F10

F1 F4

SOALBEDO.nc

F3

F4F1

F3

SOALBEDO.nc

dtF3
F3

0

Figure 8.1: Exchange algorithm between the 3 TOYCLIM component models for fields Field1, Field3, Field4,
Field10, and Field11.

8.3. RUNNING OASIS3 IN INTERPOLATOR-ONLY MODE 53

8.3.1 The “testinterp” test-case

The “testinterp” test-case can be run to test the interpolation of different source fields corresponding
to analytical functions and to evaluate the error between the interpolated fields and the same analytical
functions calculated on the different target grids.
All files needed to run this test-case can be found in prism/data/tes ti nt erp /i np ut and prism/
data/testinterp /r es ta rt .
To run “testinterp”, OASIS3 first has to be compiled in interpolator-only mode NONE (see section 8.1).
Then the programs that will calculate the interpolation error, i.e. gen error.f90 and gen error
vector.f90 (for vector fields) in directory prism/util/runn ing /t es ti nt erp /e rr or have

to be compiled (see script sc comp error).
Then, one has to adapt and execute the running script prism/util/runni ng /t es ti nte rp /
script/sc run testinterp . With TIME=ONE , the configuration file prism/data/test in ter p/
input/namcouple ONE , the input files flda1.nc, flda2.nc, flda3.nc, fldb1.nc,
fldo1.nc and fldz1.nc from prism/data/tes ti nte rp /r es ta rt and the input files aaIin.nc
and caJin.nc from prism/data/testi nt er p/ re sta rt /v ec to r are used. This example also
shows one vector interpolation (field components a at42 I and c at42 J). The test-case automatically
writes the error fields in error *.nc files and error statistics in log * files.
To run the example into which OASIS3 interpolates many time occurrences from one input file, put
TIME=MANY in sc run testinterp . The configuration file prism/data/test in te rp /in pu t/
namcouple MANY and the input file fldin.nc in prism/data/tes tin te rp /r es tar t is then
used.
The results obtained after running the testinterp test-case should match the ones in prism/data/
testinterp/outd at a .

8.3.2 The “testNONE” test-case

All files to run the “testNONE” test-case can be found in prism/util/runn in g/ te stN ON E . This
test-case provides a flexible environnement to test the interpolation specified in the INPUT/namcoupl e
configuration file from a source grid to a target grid, both grids being defined in regular OASIS3 grid data
files grids.nc, masks.nc, areas.nc (see section 7.2).
To run “testNONE”, the user has to adapt the “User specifications” part of the running script sc run NONE .
In particular, he has to specify the directory for the grid data files, the directory for the namcouple and
cf name table.txt files, the source and target grid prefixes in the namcouple and in the grid data
files (see section 5.3.1), an analytic function, and whether or not the error on the target grid will be calcu-
lated on all points (MASKERROR=NOT) or only on non masked points (MASKERROR=YES).
When launched, the running script sc run NONE :

• creates a working directory
• compiles and runs the program PROG/create inputfield.f90 that creates an input field

using the chosen analytical function on the specified source grid in file fldin.nc
• copy all required input and data file to the working directory
• run oasis3 that interpolates the analytical field from fldin.nc with the interpolation specified in

the namcouple
• compile and run the program PROG/create errorfield.f90 that calculates the error be-

tween the resulting interpolated field and the field defined by the chosen analytical function on the
specified target grid, and writes it to the file error.nc

Appendix A

The grid types for the transformations

As described in section 6, the different transformations in OASIS3 support different types of grids. The
characteristics of these grids are detailed here.

1. Grids supported for the INTERP interpolations (see section 6.4)

• ‘A’ grid : this is a regular Lat-Lon grid covering either the whole globe or an hemisphere,
going from South to North and from West to East. There is no grid point at the pole and at the
equator, and the first latitude has an offset of 0.5 grid interval. The first longitude is 0o (the
Greenwhich meridian) and is not repeated at the end of the grid ($CPER = P and $NPER = 0).
The latitudinal grid length is 180/NJ for a global grid, 90/NJ otherwise. The longitudinal grid
length is 360/NI.

• ‘B’ grid : this is a regular Lat-Lon grid covering either an hemisphere or the whole globe,
going from South to North and from West to East. There is a grid point at the pole and at
the equator (if the grid is hemispheric or global with NJ odd). The first longitude is 0o (the
Greenwhich meridian), and is repeated at the end of the grid ($CPER = P and $NPER = 1). The
latitudinal grid length is 180/(NJ-1) for a global grid, 90/(NJ-1) otherwise. The longitudinal
grid length is 360/(NI-1).

• ‘G’ grid : this is a irregular Lat-Lon Gaussian grid covering either an hemisphere or the
whole globe, going from South to North and from West to East. This grid is used in spectral
models. It is very much alike the A grid, except that the latitudes are not equidistant. There is
no grid point at the pole and at the equator. The first longitude is 0o (the Greenwhich meridian)
and is not repeated at the end of the grid ($CPER = P and $NPER = 0). The longitudinal grid
length is 360/NI.

• ‘L’ grid : this type covers regular Lat-Lon grids in general, going from South to North and
from West to East.. The grid can be described by the latitude and the longitude of the southwest
corner of the grid, and by the latitudinal and longitudinal grid mesh sizes in degrees.

• ‘Z’ grid : this is a Lat-Lon grid with non-constant latitudinal and longitudinal grid mesh
sizes, going from South to North and from West to East. The deformation of the mesh can
be described with the help of 1-dimensional positional records in each direction. This grid is
periodical ($CPER = P) with $NPER overlapping grid points.

• ‘Y’ grid : this grid is like ‘Z’ grid except that it is regional ($CPER = R and $NPER = 0).

2. Grids supported for the SCRIPR interpolations

• ‘LR’ grid : The longitudes and the latitudes of 2D Logically-Rectangular (LR) grid points
can be described by two arrays longitude(i,j) and latitude(i,j) , where i and j
are respectively the first and second index dimensions. Streched or/and rotated grids are LR
grids. Note that A, B, G, L, Y, or Z grids are all particular cases of LR grids.

54

55

• ‘U’ grid : Unstructured (U) grids do have any particular structure. The longitudes and the
latitudes of 2D Unstructured grid points must be described by two arrays longitude(nbr pts,1)
and latitude(nbr pts,1) , where nbr pts is the total grid size.

• ‘D’ grid The Reduced (D) grid is composed of a certain number of latitude circles, each
one being divided into a varying number of longitudinal segments. In OASIS3, the grid data
(longitudes, latitudes, etc.) must be described by arrays dimensioned (nbr pts,1) , where
nbr pts is the total number of grid points. There is no overlap of the grid, and no grid point
at the equator nor at the poles. There are grid points on the Greenwich meridian.

Appendix B

Changes between versions

Here is a list of changes between the different official OASIS3 versions.

B.1 Changes between oasis3 prism 2 5 and oasis3 prism 2 4

The changes between version oasis3 prism 2 5 and version oasis3 prism 2 4 delivered in De-
cember 2004 are listed here after. Please note that those modifications should not bring any difference in
the interpolation results, except for SCRIPR/DISTWGT (see below).

• Bug corrections:

– In prism/src/lib/s cr ip /s rc/ sc ri pr mp .F : initialisation of dst array(:) ; bug
fix announced to the mailing list diff-oasis@cerfacs.fr on 02/02/2006.

– In prism/src/lib/p sm ile /s rc /p ri sm enddef proto.F and prism/src/lib/
clim/src/CLIM Start MPI.F : the call to MPI barrier (that created a deadlock when not
all processes of a component model were exchanging data with the coupler) was changed for
a call to MPI wait on the previous MPI Isend; bug fix announced to the mailing list diff-
oasis@cerfacs.fr on 02/23/2006.

– For SCRIPR/DISTWGT, in prism/src/lib/ sc ri p/s rc /r em ap distwgt.f : line
190 was repeated without epsilon modification; bug fix announced to the mailing list diff-
oasis@cerfacs.fr on 03/21/2006.

– In prism/src/lib/p sm il e/ src /m od prism put proto.F90 , for prism put
proto r28 and prism put proto r24 , the reshape of the 2d field was moved after the

test checking if the field is defined in the namcouple (thanks to Arnaud Caubel from LSCE).

• Modification in SCRIP interpolations

– For SCRIPR interpolations (see section 6.4), the value 1.0E+20 is assigned to target grid
points for which no value has been calculated if prism/src/lib/ sc ri p/ src /s cr ip rm p.f
or vector.F90 (for vector interpolation) are compiled with ll weightot = .true. .

– For SCRIPR/GAUSWGT : if routine prism/src/lib/s cr ip/ sr c/ re ma p gauswgt.f
is compiled with ll nnei=.true. , the non-masked nearest neighbour is used for target
point if all original neighbours are masked (see section 6.4).

– For SCRIPR/BICUBIC (routine prism/src/lib/s cri p/ sr c/ re map bicubic.f),
the convergence criteria was modified so to ensure convergence even in single precision.

– For SCRIPR/CONSERV (routine prism/src/lib/s cri p/ sr c/ re map conserv.f),
a test was added for non-convex cell so that integration does not stall.

– The routine prism/src/lib/sc ri p/ sr c/c or ne rs .F was modified so to abort if it is
called for the target grid, as the automatic calculation of corners works only for Logically-

56

B.2. CHANGES BETWEEN OASIS3 PRISM 2 4 AND OASIS3 PRISM 2 3 57

Rectangular (LR) grids and as the target grid type is unknown. If needed, the reverse remap-
ping, in which the current target grid become the source grid, can be done .

• Other important modifications

– A new PSMILe routine prism/src/lib/ ps mil e/ sr c/ pr ism get freq.F was added;
this routine can be used to retrieve the coupling period of field (see section 4.6.3).

– The routines of the mpp io library in prism/src/lib/m pp io changed name and were
merged with the OASIS4 mpp io library.

– Routine prism/src/mod/oa si s3 /s rc /e xtr ap .F was modified to ensure that the ex-
trapolation works even if the MASK value is very big (thanks to J.M. Epitalon).

– In the namcouple, there is no need anymore to define a lag greater than 0 (e.g. LAG=+1) for
fields in mode NONE.

– Diverse modifications were included for successful compilation with NAGW compiler: non
portable use of “kind”, etc. (thanks to Luis Kornblueh from MPI).

– In prism/src/lib/ ps mi le /mo d prism get proto.F90 , a potential deadlock was
removed (the master process was sending a message to itself)(thanks to Luis Kornblueh from
MPI).

– Routine prism/src/lib/sc ri p/ sr c/ scr ip rm p vector.F90 was completely rewrit-
ten for more clarity.

– Obsolete transformations INVERT and REVERSE were removed from the toy coupled model
TOYCLIM (in file prism/util/runn in g/ toy cl im /i np ut/ na mc ou pl e . This change
does not affect the statistics printed in the cplout but changes the orientation of some fields
in the NetCDF ouput files (see the results in prism/data/toy cli m/ ou td at a).

• Other minor modifications:

– In prism/src/lib/ps mi le /s rc/ pr is m enddef proto.F , allocation is done only
for rg field trans or dg field trans depending on precision for REAL (but not for both, to save
memory).

– In few routines in prism/src/lib/c li m and in prism/src/mod/ oa si s3 , parenthe-
ses were added to make sure that && has priority over || in CPP instructions (thanks to A.
Caubel from LSCE).

– Routines scrip/src/corne rs .f , netcdf.f , and scriprmp.f were renamed
corners.F , netcdf.F , scriprmp.F and the line “INCLUDE ’netcdf.inc’ ” was changed
for “#include <netcdf.inc> ”

B.2 Changes between oasis3 prism 2 4 and oasis3 prism 2 3

The changes between versions tagged oasis3 prism 2 4 and oasis3 prism 2 3 delivered in July
2004 are the following:

• Update of compiling and running environments with version prism 2-4 of PRISM Standard Com-
piling Environment (SCE) and PRISM Standard Running Environment (SRE), which among other
improvements include the environments to compile and run on the CRAY X1 (see the directories
with <node>=baltic1), thanks to Charles Henriet from CRAY France, and on a Linux station
from Recherche en Prévision Numérique (Environnement Canada, Dorval, Canada) (see the direc-
tories with <node>=armc28).

• prism/src/mod/o as is3 /s rc /i ni iof .F : the opening of the coupling restart files is done
only if the corresponding field has a lag greater than 0; note that this implies that all fields in mode
NONE must now have a lag greater than 0 (e.g. LAG=+1) (thanks to Veronika Gayler from M&D).

58 APPENDIX B. CHANGES BETWEEN VERSIONS

• prism/src/lib/p sm ile /s rc /p ri sm def var proto.F : contrary to what was previously
described in the documentation, PRISM Double is not supported as 7th argument to describe the
field type; PRISM Real must be given for single or double precision real arrays.

• prism/src/mod/o as is3 /s rc /i ni par .F 90 : For upward compatibility of SCRIPR inter-
polation, “VECTOR” is still accepted in the namcouple as the field type and leads to the same
behaviour as before (i.e. each vector component is treated as an independent scalar field). To have
a real vector treatment, one has to indicate ”VECTOR I” or ”VECTOR J” (see section 6.4).

• Bug corrections in:
– prism/src/lib/s cr ip/ sr c/ sc ri prm p vector.F90 : In some cases, some local

variables were not deallocated and variable dimid was declared twice.
– prism/src/lib/p sm ile /s rc /m od psmile io.F90 : correct allocation of array host-

ing the longitudes (thanks to Reiner Vogelsang from SGI Germany).
– prism/src/lib/p sm ile /s rc /w ri te file.F90 : to remove a deadlock on some ar-

chitecture (thanks to Luis Kornblueh from MPI).
– prism/src/lib/p sm ile /s rc /p ri sm enddef proto.F : the error handler is now

explicitely set to MPI ERRORS RETURN before the call to MPI Buffer Detach to avoid
abort on some architecture when the component model is not previously attached to any buffer
(thanks to Luis Kornblueh from MPI).

– prism/src/lib/s cr ip/ sr c/ re ma p conserv.f (thanks to Veronika Gayler from M&D).
– prism/src/mod/o as is3 /s rc /i ni cmc .F

– prism/src/lib/s cr ip/ sr c/ re ma p distwgt.f

B.3 Changes between oasis3 prism 2 3 and oasis3 prism 2 2

The changes between versions tagged oasis3 prism 2 3 delivered in July 2004 and oasis3 prism 2 2
delivered in June 2004 are the following:

• Bug correction of the previous bug fix regarding ordering of grid and data information contained in
I/O files when INVERT or REVERSE transformations are used: the re-ordering now occurs only for
source field if INVERT is used, and only for target field if REVERSE is used.

• LGPL license: OASIS3 is now officially released under a Lesser GNU General Public License
(LGPL) as published by the Free Software Foundation (see prism/src/mod/ oa sis 3/ CO PY RI GHT
and prism/src/mod/o as is3 /s rc /c ou ple .f)

• Upgrade of compiling and running environments: The compiling and running environments have
been upgraded to the PRISM Standard Compiling and Running Environment version dated August
5th 2004, that should be very close to “prism 2-3”.

• Treament of vector fields: The interpolation algorithms using the SCRIP library now support vector
fields, including automatic rotation from local to geographic coordinate system, projection in Carte-
sian coordinate system and interpolation of 3 Cartesian components, and support of vector compo-
nents given on different grids. New routines have been added in prism/src/lib/s cr ip /s rc :
scriprmp vector.F90 and rotations.F90 . For more detail, see SCRIPR in section 6.4.

• All include of mpif.h are now written ‘#include <mpif.h>’.
• The output format of CHECKIN and CHECKOUT results is now E22.7

B.4 Changes between oasis3 prism 2 2 and oasis3 prism 2 1

The changes between versions tagged oasis3 prism 2 2 delivered in June 2004 and oasis3 prism 2 1
delivered to PRISM in April 2004 are the following:

B.5. CHANGES BETWEEN OASIS3 PRISM 2 1 AND OASIS3 PRISM 1 2 59

• Bug corrections

– INTERP/GAUSSIAN and SCRIPR/GAUSWGT transformations work for ‘U’ grids.
– The grid and data information contained in I/O files output by the PSMILe library have now a

coherent ordering even if INVERT or REVERSE transformations are used.

• OASIS3 and the TOYCLIM coupled model are ported to IBM Power4 and Linux Opteron, which
are now included in the Standard Compiling and Running Environments (SCE and SRE).

• SIPC technique communication is re-validated.
• Clim MaxSegments = 338 in prism/src/lib/ cl im /sr c/ mo d clim.F90 and in prism/src/lib/ ps mil e/ sr c/ mo d prism proto.F90 .

338 is presently the largest value needed by a PRISM model.
• MPI BSend : below the call to prism enddef proto , the PSMILe tests whether or not the

model has already attached to an MPI buffer. If it is the case, the PSMILe detaches from the buffer,
adds the size of the pre-attached buffer to the size needed for the coupling exchanges, and reattaches
to an MPI buffer. The model own call to MPI Buffer Attach must therefore be done before the
call to prism enddef proto . Furthermore, the model is not allowed to call MPI BSend after
the call to prism terminate proto , as the PSMILe definitively detaches from the MPI buffer
in this routine. See the example in the toyatm model in prism/src/mod/to ya tm /s rc .

B.5 Changes between oasis3 prism 2 1 and oasis3 prism 1 2

The changes between versions tagged oasis3 prism 1 2 delivered in September 2003 and oasis3 prism 2 1
delivered to PRISM in April 2004 are the following:

• Bug corrections

– Thanks to Eric Maisonnave, a bug was found and corrected in /prism/src/lib/scrip/src/scriprmp.f:
“sou mask” and “tgt mask” were not properly initialised if weights and addresses were not
calculated but read from file.

– Some deallocation were missing in prism terminate proto.F (“ig def part”, “ig length part”,
“cg ignout field”).

– Thanks to Arnaud Caubel, a bug was found and corrected in /prism/src/lib/psmile/src/write file.F90.
In case of parallel communication between a model and OASIS3 main process, the binary cou-
pling restart files were not written properly (NetCDF coupling restart files are OK).

• Routines renamed
The routines preproc.f, extrap.f, iniiof.f in prism/src/mod/o as is 3/s rc were
renamed to preproc.F, extrap.F, iniiof.F , as a CPP key ‘key openmp’ was added.
Please note that this key, allowing openMP parallelisation, is not fully tested yet.

• Modifications in the namcouple

– The third entry on the field first line now corresponds to an index in the new auxiliary file
cf name table.txt (see sections 5.3 and 7.1).

– For IGNORED, IGNOUT and OUTPUT fields, the source and target grid locator prefixes must
now be given on the field second line (see section 5.3.2)

• A new auxiliary file cf name table.txt

For each field, the CF standard name used in the OASIS3 log file, cplout, is now defined in an
additional auxiliary file cf name table.txt not in inipar.F anymore. This auxiliary file must be
copied to the working directory at the beginning of the run. The user may edit and modify this file
at her own risk. In cf name table.txt, an index is given for each field standard name and associated
units. The appropriate index has to be indicated for each field in the namcouple (third entry on the
field first line, see section 5.3).

60 APPENDIX B. CHANGES BETWEEN VERSIONS

This standard name and the associated units are also used to define the field attributes “long name”
and “units” in the NetCDF output files written by the PSMILe for fields with status EXPOUT,
IGNOUT and OUTPUT .
For more details on this auxiliary file, see section 7.1.

• Many timesteps for mode NONE
In mode NONE, OASIS3 can now interpolate at once all time occurrences of a field contained in
an input NetCDF file. The time variable in the input file is recognized by its attribute “units”. The
acceptable units for time are listed in the udunits.dat file (3). This follows the CF convention.
The keyword $RUNTIME in the namcouple has to be the number of time occurrences of the field to
interpolate from the input file. The “coupling” period of the field (4th entry on the field first line)
must be always “1”. Note that if $RUNTIME is smaller than the total number of time ocurrences in
the input file, the first $RUNTIME occurrences will be interpolated.
For more details, see section 6.1.

• Model grid data file writing
The grid data files grids.nc, masks.nc and areas.nc can now be written directly at run time by
the component models, if they call the new routines prism start grids writing, prism write grid,
prism write corner prism write mask, prism write area, prism terminate grids writing.
The writing of those grid files by the models is driven by the coupler. It first checks whether the
binary file grids or the netCDF file grids.nc exists (in that case, it is assumed that areas or areas.nc
and masks or masks.nc files exist too) or if writing is needed. If grids or grids.nc exists, it must
contain all grid information from all models; if it does not exist, each model must write its grid
informations in the grid data files.
See section 4.2 for more details.

• Output of CF compliant files
The NetCDF output files written by the PSMILe for fields with status EXPOUT, IGNOUT and
OUTPUT are now fully CF compliant.
In the NetCDF file, the field attributes “long name” and “units” are the ones corresponding to the
field index in cf name table.txt (see above and section 7.1). The field index must be given by the
user as the third entry on the field first line in the namcouple.
Also, the latitudes and the longitudes of the fields are now automatically read from the grid aux-
iliary data file grids.nc and written to the output files. If the latitudes and the longitudes of the
mesh corners are present in grids.nc, they are also written to the ouput files as associated “bounds”
variable. This works whether the grids.nc is given initially by the user or written at run time by the
component models (see above). However, this does not work if the user gives the grid definition in
a binary file grids.

• Removal of pre-compiling key “key BSend”
The pre compiling key “key BSend” has been removed. The default has changed: by default, the
buffered MPI BSend is used, unless NOBSEND is specified in the namcouple after MPI1 or MPI2,
in which case the standard blocking send MPI Send is used to send the coupling fields.

Appendix C

Copyright statements

C.1 OASIS3 copyright statement

Copyright 2006 Centre Europeen de Recherche et Formation Avancee en Calcul Scientifique (CERFACS).
This software and ancillary information called OASIS3 is free software. CERFACS has rights to use,
reproduce, and distribute OASIS3. The public may copy, distribute, use, prepare derivative works and
publicly display OASIS3 under the terms of the Lesser GNU General Public License (LGPL) as published
by the Free Software Foundation, provided that this notice and any statement of authorship are reproduced
on all copies. If OASIS3 is modified to produce derivative works, such modified software should be clearly
marked, so as not to confuse it with the OASIS3 version available from CERFACS.
The developers of the OASIS3 software are researchers attempting to build a modular and user-friendly
coupler accessible to the climate modelling community. Although we use the tool ourselves and have
made every effort to ensure its accuracy, we can not make any guarantees. We provide the software to you
for free. In return, you–the user–assume full responsibility for use of the software. The OASIS3 software
comes without any warranties (implied or expressed) and is not guaranteed to work for you or on your
computer. Specifically, CERFACS and the various individuals involved in development and maintenance
of the OASIS3 software are not responsible for any damage that may result from correct or incorrect use
of this software.

C.2 The SCRIP 1.4 copyright statement

The SCRIP 1.4 copyright statement reads as follows:
“Copyright 1997, 1998 the Regents of the University of California. This software and ancillary infor-
mation (herein called SOFTWARE) called SCRIP is made available under the terms described here. The
SOFTWARE has been approved for release with associated LA-CC Number 98-45. Unless otherwise in-
dicated, this SOFTWARE has been authored by an employee or employees of the University of California,
operator of Los Alamos National Laboratory under Contract No. W-7405-ENG-36 with the United States
Department of Energy. The United States Government has rights to use, reproduce, and distribute this
SOFTWARE. The public may copy, distribute, prepare derivative works and publicly display this SOFT-
WARE without charge, provided that this Notice and any statement of authorship are reproduced on all
copies. Neither the Government nor the University makes any warranty, express or implied, or assumes
any liability or responsibility for the use of this SOFTWARE. If SOFTWARE is modified to produce
derivative works, such modified SOFTWARE should be clearly marked, so as not to confuse it with the
version available from Los Alamos National Laboratory.”

61

Appendix D

The coupled models realized with OASIS

Here is a list of (some of) the coupled models realized with OASIS within the past 5 years or so in Europe
and in other institutions in the world:

Lab Cnt Vrs Atm Oce Comp
Environment Canada Canada 3.0 MEC GOM IBM Power4
IRI USA 2.4 ECHAM4 MOM3 SGI Origin

IBM Power3
JPL(NASA) USA 2.4 QTCM Trident SGI
JAMSTEC Japan 2.4 ECHAM4 OPA 8.2 ES SX5
U. of Aus- 3.0 Data atm. model MOM4 SGI O3400
Tasmania tral. Compaq
BMRC Aus- 3.0 BAM4 MOM4

tral. 2.4 BAM3 T47L34 ACOM2 180X194X25
CAS-IIT India 3.0 MM5 POM
IAP-CAS China AGCM LSM

Table D.1: List of couplings realized with OASIS within the past 5 years in institutions outside Europe . The
columns list the institution, the country, the OASIS version used, the atmospheric model, the ocean
model, and the computing platform used for the coupled model run.

62

63

Lab Cnt Vrs Atm Oce Comp
IPSL Fr 3.0 LMDz 96x71x19 ORCA2 182x149x31 SX6

+ ORCH/INCA + LIM
2.4 LMDz 96x71x19 ORCA2 182x149x31 VPP5000
2.4 LMDz 72x45x19 ORCA4 92x76x31 VPP5000
2.4 LMDZ 120X90X1 OPA ATL3 1/3 deg
2.4 LMDZ 120X90X1 OPA ATL1 1 deg

Lodyc-ISAO Fr,It 2.3 ECHAM4 T30/T42 L14 ORCA2 182x149x31 SX4,SX5
Météo-Fr Fr 3.0 ARPEGE 4 ORCA2 VPP5000

2.4 ARPEGE medias OPA med 1/8e VPP5000
2.2 ARPEGE 3 OPA 8.1 + Gelato VPP5000

Mercator Fr 3.0 interp. mode PAM (OPA)
CERFACS Fr 3.0 ARPEGE 4 OPA9/NEMO VPP5000

CRAY XD1
PC Linux

2.4 ARPEGE 3 ORCA2-LIM VPP5000
2.2 ARPEGE 3 OPA 8.1 VPP700

ECMWF UK 2.2 IFS T63/T255 E-HOPE 2deg/1deg IBM Power 4
2.2 IFS Cy23r4 T159L40 E-HOPE 256L29 VPP700
2.2 IFS Cy23r4 T95L40 E-HOPE 256L29 VPP700

MPI Ger- 3.0 ECHAM5 MPI-OM IBM Power4
ma- 2.4 ECHAM5 T42/L19 C-HOPE T42+L20 NEC-SX
ny 2.4 PUMAT42/L19 C-HOPE 2deg GIN NEC-SX

2.4 EMAD E-HOPE T42+L20 CRAY C-90
2.4 ECHAM5 T42/L19 E-HOPE T42+L20 NEC-SX

IFM-GEOMAR D 3.0 ECHAM5 NEMO
CGAM UK 3.0 HadAM3 2.5x3.75 L20 ORCA2 182x149x31 NEC SX6

2.4 HadAM3 2.5x3.75 L20 ORCA 182x149x31 T3E
SMHI Sw 3.0 ECHAM-RCA(reg.) SGI O3800

2.3 RCA-HIRLAM (reg.) RCO-OCCAM (reg.)
INGV It 3.0 ECHAM5 MPIOM NEC SX6
KNMI Nl 3.0 ECHAM5 MPIOM SGI IRIX64
DMI Dk 3.0 ECHAM (glob.) NEC SX6
U.Bergen Nw 3.0 MM5 ROMS
NERSC Nw ARPEGE MICOM

Table D.2: List of couplings realized with OASIS within the past 5 years in Europe. The columns list the institution,
the country, the OASIS version used, the atmospheric model, the ocean model, and the computing
platform used for the coupled model run.

Bibliography

[1] http://gcmd.nasa.gov/records/LANL-SCRIP.html
[2] http://www.gfdl.noaa.gov/˜ vb/mpp io.html
[3] http://www.unidata.ucar.edu/packages/udunits/udunits.dat
[4] S. Valcke, A. Caubel, R. Vogelsang, and D. Declat: OASIS3 User’s Guide (oasis3 prism 2-4),

PRISM Report No 2, 5th Ed., CERFACS, Toulouse, France, 2004.
[5] S. Valcke, A. Caubel, D. Declat and L. Terray: OASIS3 Ocean Atmosphere Sea Ice Soil User’s

Guide, Technical Report TR/CMGC/03-69, CERFACS, Toulouse, France, 2003.
[6] S. Valcke, L. Terray and A. Piacentini: OASIS 2.4 Ocean Atmosphere Sea Ice Soil, User’s Guide

and Reference Manual, Technical Report TR/CMGC/00-10, CERFACS, Toulouse, France, 2000.
[7] L. Terray, S. Valcke and A. Piacentini: OASIS 2.3 Ocean Atmosphere Sea Ice Soil, User’s Guide

and Reference Manual, Technical Report TR/CMGC/99-37, CERFACS, Toulouse, France, 1999.
[8] C. Cassou, P. Noyret, E. Sevault, O. Thual, L. Terray, D. Beaucourt, and M. Imbard: Dis-

tributed Ocean-Atmosphere Modelling and Sensitivity to the Coupling Flux Precision: the CATH-
ODe Project. Monthly Weather Review, 126, No 4: 1035-1053, 1998.

[9] L. Terray, O. Thual, S. Belamari, M. Déqué, P. Dandin, C. Lévy, and P. Delecluse. Climatology and
interannual variability simulated by the arpege-opa model. Climate Dynamics, 11:487–505, 1995

[10] E. Guilyardi, G. Madec, L. Terray, M. Déqué, M. Pontaud, M. Imbard, D. Stephenson, M.-A. Filib-
erti, D. Cariolle, P. Delecluse, and O. Thual. Simulation couplée océan-atmosphère de la variabilité
du climat. C.R. Acad. Sci. Paris, t. 320, série IIa:683–690, 1995.

[11] L. Terray and O. Thual. Oasis: le couplage océan-atmosphère. La Météorologie, 10:50–61, 1995.
[12] M. Pontaud, L. Terray, E. Guilyardi, E. Sevault, D. B. Stephenson, and O. Thual. Coupled ocean-

atmosphere modelling - computing and scientific aspects. In 2nd UNAM-CRAY supercomputing
conference, Numerical simulations in the environmental and earth sciences Mexico-city, Mexico,
1995.

[14] L. Terray, E. Sevault, E. Guilyardi and O. Thual OASIS 2.0 Ocean Atmosphere Seai Ice Soil User’s
Guide and Reference Manual Technical Report TR/CGMC/95-46, CERFACS, 1995.

[14] E. Sevault, P. Noyret, and L. Terray. Clim 1.2 user guide and reference manual. Technical Report
TR/CGMC/95-47, CERFACS, 1995.

[15] P. Noyret, E. Sevault, L. Terray and O. Thual. Ocean-atmosphere coupling. Proceedings of the Fall
Cray User Group (CUG) meeting, 1994.

[16] L. Terray, and O. Thual. Coupled ocean-atmosphere simulations. In High Performance Computing
in the Geosciences, proceedings of the Les Houches Workshop F.X. Le Dimet Ed., Kluwer Academic
Publishers B.V, 1993.

64

